Advertisement

Introduction

  • Panagiotis D. Christofides
  • Jinfeng Liu
  • David Muñoz de la Peña
Part of the Advances in Industrial Control book series (AIC)

Abstract

In Chap. 1, the motivation of networked and distributed process control is first introduced and is followed by a discussion on networked and distributed control architectures with block diagram illustrations as well as a specific chemical process example. Subsequently, previous work on networked and distributed control is reviewed and the objectives and organization of the book are discussed.

Keywords

Model Predictive Control Network Control System Local Controller Distribute Control System Control Configuration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 3.
    Azimi-Sadjadi, B. (2003). Stability of networked control systems in the presence of packet losses. In Proceedings of the 42nd IEEE conference on decision and control (pp. 676–681). Maui, Hawaii. Google Scholar
  2. 7.
    Brockett, R. W., & Liberzon, D. (2000). Quantized feedback stabilization of linear systems. IEEE Transactions on Automatic Control, 45, 1279–1289. CrossRefMATHMathSciNetGoogle Scholar
  3. 8.
    Camponogara, E., Jia, D., Krogh, B. H., & Talukdar, S. (2002). Distributed model predictive control. IEEE Control Systems Magazine, 22, 44–52. CrossRefGoogle Scholar
  4. 11.
    Christofides, P. D., & El-Farra, N. H. (2005). Control of nonlinear and hybrid process systems: Designs for uncertainty, constraints and time-delays. Berlin: Springer. Google Scholar
  5. 12.
    Christofides, P. D., Davis, J. F., El-Farra, N. H., Clark, D., Harris, K. R. D., & Gipson, J. N. (2007). Smart plant operations: vision, progress and challenges. AIChE Journal, 53, 2734–2741. CrossRefGoogle Scholar
  6. 13.
    Cinar, A., Palazoglu, A., & Kayihan, F. (2007). Chemical process performance evaluation. Boca Raton: CRC Press/Taylor & Francis. Google Scholar
  7. 16.
    Davis, J. F. (2007). Report from NSF workshop on cyberinfrastructure in chemical and biological systems: impact and directions (Technical report). (See http://www.oit.ucla.edu/nsfci/NSFCIFullReport.pdf for the pdf file of this report.)
  8. 17.
    Dunbar, W. B. (2007). Distributed receding horizon control of dynamically coupled nonlinear systems. IEEE Transactions on Automatic Control, 52, 1249–1263. CrossRefMathSciNetGoogle Scholar
  9. 20.
    Elia, N., & Eisenbeis, J. N. (2004). Limitations of linear remote control over packet drop networks. In Proceedings of IEEE conference on decision and control (pp. 5152–5157). Nassau, Bahamas. Google Scholar
  10. 22.
    Franco, E., Magni, L., Parisini, T., Polycarpou, M. M., & Raimondo, D. M. (2008). Cooperative constrained control of distributed agents with nonlinear dynamics and delayed information exchange: a stabilizing receding-horizon approach. IEEE Transactions on Automatic Control, 53, 324–338. CrossRefMathSciNetGoogle Scholar
  11. 24.
    Gao, H., Chen, T., & Lam, J. (2008). A new delay system approach to network-based control. Automatica, 44, 39–52. CrossRefMATHMathSciNetGoogle Scholar
  12. 26.
    Ghantasala, S., & El-Farra, N. H. (2009). Robust diagnosis and fault-tolerant control of distributed processes over communication networks. International Journal of Adaptive Control and Signal Processing, 23, 699–721. CrossRefMATHMathSciNetGoogle Scholar
  13. 27.
    Grüne, L., Pannek, J., & Worthmann, K. (2009). A networked unconstrained nonlinear MPC scheme. In Proceedings of ECC 2009 (pp. 371–376). Budapest, Hungary. Google Scholar
  14. 28.
    Hadjicostis, C. N., & Touri, R. (2002). Feedback control utilizing packet dropping networks links. In Proceedings of the 41st IEEE conference on decision and control (pp. 1205–1210). Las Vegas, Nevada. CrossRefGoogle Scholar
  15. 29.
    Hassibi, A., Boyd, S. P., & How, J. P. (1999). Control of asynchronous dynamical systems with rate constraints on events. In Proceedings of IEEE conference on decision and control (pp. 1345–1351). Phoenix, Arizona. Google Scholar
  16. 32.
    Hespanha, J. P. (2005). A model for stochastic hybrid systems with application to communication networks. Nonlinear Analysis, 62, 1353–1383. CrossRefMATHMathSciNetGoogle Scholar
  17. 34.
    Hong, S. H. (1995). Scheduling algorithm of data sampling times in the integrated communication and control-systems. IEEE Transactions on Control Systems Technology, 3, 225–230. CrossRefGoogle Scholar
  18. 35.
    Imer, O. C., Yüksel, S., & Başar, T. (2006). Optimal control of LTI systems over unreliable communications links. Automatica, 42, 1429–1439. CrossRefMATHGoogle Scholar
  19. 36.
    Jeong, S. C., & Park, P. (2005). Constrained MPC algorithm for uncertain time-varying systems with state-delay. IEEE Transactions on Automatic Control, 50, 257–263. CrossRefMathSciNetGoogle Scholar
  20. 37.
    Jia, D., & Krogh, B. (2002). Min-max feedback model predictive control for distributed control with communication. In Proceedings of the American control conference (pp. 4507–4512). Anchorage, Alaska. Google Scholar
  21. 39.
    Keviczky, T., Borrelli, F., & Balas, G. J. (2006). Decentralized receding horizon control for large scale dynamically decoupled systems. Automatica, 42, 2105–2115. CrossRefMATHMathSciNetGoogle Scholar
  22. 45.
    Lian, F.-L., Moyne, J., & Tilbury, D. (2003). Modelling and optimal controller design of networked control systems with multiple delays. International Journal of Control, 76, 591–606. CrossRefMATHMathSciNetGoogle Scholar
  23. 46.
    Lin, H., & Antsaklis, P. J. (2005). Stability and persistent disturbance attenuation properties for a class of networked control systems: switched system approach. International Journal of Control, 78, 1447–1458. CrossRefMATHMathSciNetGoogle Scholar
  24. 49.
    Liu, G.-P., Xia, Y., Chen, J., Rees, D., & Hu, W. (2007). Networked predictive control of systems with random networked delays in both forward and feedback channels. IEEE Transactions on Industrial Electronics, 54, 1282–1297. CrossRefGoogle Scholar
  25. 53.
    Liu, J., Muñoz de la Peña, D., Christofides, P. D., & Davis, J. F. (2009). Lyapunov-based model predictive control of nonlinear systems subject to time-varying measurement delays. International Journal of Adaptive Control and Signal Processing, 23, 788–807. CrossRefMATHGoogle Scholar
  26. 60.
    Maestre, J. M., Muñoz de la Peña, D., & Camacho, E. F. (2009). A distributed MPC scheme with low communication requirements. In Proceedings of the American control conference (pp. 2797–2802). Saint Louis, MO, USA. Google Scholar
  27. 61.
    Maestre, J. M., Muñoz de la Peña, D., & Camacho, E. F. (2011). Distributed model predictive control based on a cooperative game. Optimal Control Applications and Methods, 32, 153–176. CrossRefGoogle Scholar
  28. 62.
    Magni, L., & Scattolini, R. (2006). Stabilizing decentralized model predictive control of nonlinear systems. Automatica, 42, 1231–1236. CrossRefMATHMathSciNetGoogle Scholar
  29. 63.
    Mao, X. (1999). Stability of stochastic differential equations with Markovian switching. Stochastic Processes and Their Applications, 79, 45–67. CrossRefMATHMathSciNetGoogle Scholar
  30. 66.
    McKeon-Slattery, M. (2010). The world of wireless. Chemical Engineering Progress, 106, 6–11. Google Scholar
  31. 69.
    Mhaskar, P., Gani, A., McFall, C., Christofides, P. D., & Davis, J. F. (2007). Fault-tolerant control of nonlinear process systems subject to sensor faults. AIChE Journal, 53, 654–668. CrossRefGoogle Scholar
  32. 70.
    Montestruque, L. A., & Antsaklis, P. J. (2003). On the model-based control of networked systems. Automatica, 39, 1837–1843. CrossRefMATHMathSciNetGoogle Scholar
  33. 71.
    Montestruque, L. A., & Antsaklis, P. J. (2004). Stability of model-based networked control systems with time-varying transmission times. IEEE Transactions on Automatic Control, 49, 1562–1572. CrossRefMathSciNetGoogle Scholar
  34. 72.
    Muñoz de la Peña, D., & Christofides, P. D. (2008). Lyapunov-based model predictive control of nonlinear systems subject to data losses. IEEE Transactions on Automatic Control, 53, 2076–2089. CrossRefGoogle Scholar
  35. 74.
    Naghshtabrizi, P., & Hespanha, J. (2005). Designing an observer-based controller for a network control system. In Proceedings of the 44th IEEE conference on decision and control and the European control conference 2005 (pp. 848–853). Seville, Spain. CrossRefGoogle Scholar
  36. 75.
    Naghshtabrizi, P., & Hespanha, J. (2006). Anticipative and non-anticipative controller design for network control systems. In Lecture notes in control and information sciences: Vol. 331. Networked embedded sensing and control (pp. 203–218). CrossRefGoogle Scholar
  37. 76.
    Nair, G. N., & Evans, R. J. (2000). Stabilization with data-rate-limited feedback: tightest attainable bounds. Systems & Control Letters, 41, 49–56. CrossRefMATHMathSciNetGoogle Scholar
  38. 77.
    Nešić, D., & Teel, A. R. (2004a). Input-output stability properties of networked control systems. IEEE Transactions on Automatic Control, 49, 1650–1667. CrossRefGoogle Scholar
  39. 78.
    Nešić, D., & Teel, A. R. (2004b). Input-to-state stability of networked control systems. Automatica, 40, 2121–2128. MATHGoogle Scholar
  40. 80.
    Neumann, P. (2007). Communication in industrial automation: what is going on? Control Engineering Practice, 15, 1332–1347. CrossRefGoogle Scholar
  41. 81.
    Nguyen, G. T., Katz, R. H., Noble, B., & Satyanarayananm, M. (1996). A tracebased approach for modeling wireless channel behavior. In Proceedings of the winter simulation conference (pp. 597–604). Coronado, California. Google Scholar
  42. 84.
    Perk, S., Teymour, F., & Cinar, A. (2010). Statistical monitoring of complex chemical processes using agent-based systems. Industrial & Engineering Chemistry Research, 49, 5080–5093. CrossRefGoogle Scholar
  43. 85.
    Ploplys, N. J., Kawka, P. A., & Alleyne, A. G. (2004). Closed-loop control over wireless networks—developing a novel timing scheme for real-time control systems. IEEE Control Systems Magazine, 24, 52–71. CrossRefGoogle Scholar
  44. 90.
    Raimondo, D. M., Magni, L., & Scattolini, R. (2007). Decentralized MPC of nonlinear system: an input-to-state stability approach. International Journal of Robust and Nonlinear Control, 17, 1651–1667. CrossRefMATHMathSciNetGoogle Scholar
  45. 92.
    Rawlings, J. B., & Stewart, B. T. (2008). Coordinating multiple optimization-based controllers: New opportunities and challenges. Journal of Process Control, 18, 839–845. CrossRefGoogle Scholar
  46. 93.
    Richards, A., & How, J. P. (2007). Robust distributed model predictive control. International Journal of Control, 80, 1517–1531. CrossRefMATHMathSciNetGoogle Scholar
  47. 94.
    Ritchey, V. S., & Franklin, G. F. (1989). A stability criterion for asynchronous multirate linear systems. IEEE Transactions on Automatic Control, 34, 529–535. CrossRefMathSciNetGoogle Scholar
  48. 95.
    Scattolini, R. (2009). Architectures for distributed and hierarchical model predictive control—a review. Journal of Process Control, 19, 723–731. CrossRefGoogle Scholar
  49. 96.
    Shin, K. G. (1991). Real-time communications in a computer-controlled workcell. IEEE Transactions on Robotics and Automation, 7, 105–113. CrossRefGoogle Scholar
  50. 98.
    Stewart, B. T., Venkat, A. N., Rawlings, J. B., Wright, S. J., & Pannocchia, G. (2010). Cooperative distributed model predictive control. Systems & Control Letters, 59, 460–469. CrossRefMATHMathSciNetGoogle Scholar
  51. 99.
    Su, Y. F., Bhaya, A., Kaszkurewicz, E., & Kozyakin, V. S. (1997). Further results on stability of asynchronous discrete-time linear systems. In Proceedings of the 36th IEEE conference on decision and control (pp. 915–920). San Diego, California. CrossRefGoogle Scholar
  52. 100.
    Sun, Y., & El-Farra, N. H. (2008). Quasi-decentralized model-based networked control of process systems. Computers & Chemical Engineering, 32, 2016–2029. CrossRefGoogle Scholar
  53. 101.
    Tabbara, M., Nešić, D., & Teel, A. R. (2007). Stability of wireless and wireline networked control systems. IEEE Transactions on Automatic Control, 52, 1615–1630. CrossRefGoogle Scholar
  54. 102.
    Tatara, E., Cinar, A., & Teymour, F. (2007). Control of complex distributed systems with distributed intelligent agents. Journal of Process Control, 17, 415–427. CrossRefGoogle Scholar
  55. 103.
    Tipsuwan, Y., & Chow, M. (2003). Control methodologies in networked control systems. Control Engineering Practice, 11, 1099–1111. CrossRefGoogle Scholar
  56. 108.
    Venkat, A. N., Rawlings, J. B., & Wright, S. J. (2005). Stability and optimality of distributed model predictive control. In Proceedings of the 44th IEEE conference on decision and control and the European control conference ECC 2005 (pp. 6680–6685). Seville, Spain. CrossRefGoogle Scholar
  57. 110.
    Walsh, G., Beldiman, O., & Bushnell, L. (2001). Asymptotic behavior of nonlinear networked control systems. IEEE Transactions on Automatic Control, 46, 1093–1097. CrossRefMATHMathSciNetGoogle Scholar
  58. 111.
    Walsh, G., Ye, H., & Bushnell, L. (2002). Stability analysis of networked control systems. IEEE Transactions on Control Systems Technology, 10, 438–446. CrossRefGoogle Scholar
  59. 112.
    Wang, Y. M. L., Chu, T., & Hao, F. (2005). Stabilization of networked control systems with data packet dropout and transmission delays: continuous-time case. European Journal of Control, 11, 40–49, 55. CrossRefMathSciNetGoogle Scholar
  60. 113.
    Witrant, E., Georges, D., Canudas-de-Wit, C., & Alamir, M. (2007). On the use of state predictors in networked control system. In Lecture notes in control and information sciences: Vol. 352. Applications of time delay systems (pp. 17–35). New York: Springer. CrossRefGoogle Scholar
  61. 114.
    Ydstie, E. B. (2002). New vistas for process control: Integrating physics and communication networks. AIChE Journal, 48, 422–426. CrossRefGoogle Scholar
  62. 115.
    Ye, H., & Walsh, G. (2001). Real-time mixed-traffic wireless networks. IEEE Transactions on Industrial Electronics, 48, 883–890. CrossRefGoogle Scholar
  63. 116.
    Ye, H., Walsh, G., & Bushnell, L. (2000). Wireless local area networks in the manufacturing industry. In Proceedings of the American control conference (pp. 2363–2367). Chicago, Illinois. Google Scholar
  64. 118.
    Zhang, L., Shi, Y., Chen, T., & Huang, B. (2005). A new method for stabilization of networked control systems with random delays. IEEE Transactions on Automatic Control, 50, 1177–1181. CrossRefMathSciNetGoogle Scholar
  65. 119.
    Zornio, P., & Karschnia, B. (2009). Realizing the promise of wireless. Chemical Engineering Progress, 105, 22–29. Google Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Panagiotis D. Christofides
    • 1
  • Jinfeng Liu
    • 1
  • David Muñoz de la Peña
    • 2
  1. 1.Department of Chemical and Biomolecular EngineeringUniversity of California, Los AngelesLos AngelesUSA
  2. 2.Departamento de Ingeniería de Sistemas y AutomáticaUniversidad de SevillaSevillaSpain

Personalised recommendations