Advertisement

Calibration of Virtual Haptic Texture Algorithms

  • Gianni Campion
Part of the Springer Series on Touch and Haptic Systems book series (SSTHS)

Abstract

Calibrating displays can be a time-consuming process. We describe a fast method for adjusting the subjective experience of roughness produced by different haptic texture synthesis algorithms. Efficiency results from the exponential convergence of the “modified binary search method” (MOBS) to a point of subjective equivalence between two virtual haptic textures. The method was applied to calibrate the modulation of the normal interaction force component against modulating a tangential friction force component. A table establishing the perceptual equivalence between parameters having different physical dimensions was found by testing 10 subjects. The method is able to overcome significant individual differences in the subjective judgement of roughness because roughness itself never needs to be directly estimated. A similar method could be applied to other perceptual dimensions provided that the controlling parameter be monotonically related to a subjective estimate.

Keywords

Spatial Frequency Psychometric Function Characteristic Number Haptic Device Passivity Margin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors would like to thank Andrew H.C. Gosline for the engineering of the eddy current brakes, Maarten W.A. Wijntjes and Ilja Frissen for advice with psychometric techniques. This work was funded by a Collaborative Research and Development Grant “High Fidelity Surgical Simulation” from the Natural Sciences and Engineering Council of Canada (nserc), and by Immersion Corp. Additional funding is from a Discovery Grant fromnserc for the second author.

References

  1. 1.
    Anderson, A.J., Johnson, C.A.: Comparison of the ASA, MOBS, and ZEST threshold methods. Vis. Res.46(15), 2403–2411 (2006) CrossRefGoogle Scholar
  2. 2.
    Bergmann-Tiest, W.M., Kappers, A.M.L.: Analysis of haptic perception of materials by multidimensional scaling and physical measurements of roughness and compressibility. Acta Psychol.121, 1–20 (2006) CrossRefGoogle Scholar
  3. 3.
    Campion, G., Hayward, V.: Fundamental limits in the rendering of virtual haptic textures. In: Proceedings of the First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environments and Teleoperator Systems, WHC’05, pp. 263–270 (2005) CrossRefGoogle Scholar
  4. 4.
    Campion, G., Hayward, V.: On the synthesis of haptic textures. IEEE Trans. Robot.24(3), 527–536 (2008) CrossRefGoogle Scholar
  5. 5.
    Campion, G., Wang, Q., Hayward, V.: The Pantograph Mk-II: A haptic instrument. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS’05, pp. 723–728 (2005) Google Scholar
  6. 6.
    Campion, G., Gosline, A.H., Hayward, V.: Does judgement of haptic virtual texture roughness scale monotonically with lateral force modulation? In: Proceedings of Eurohaptics. LNCS, vol. 5024, pp. 718–723. Springer, Berlin (2008) Google Scholar
  7. 7.
    Choi, S., Tan, H.Z.: Perceived instability of virtual haptic texture. III. Effect of update rate. Presence16(3), 263–278 (2007) CrossRefGoogle Scholar
  8. 8.
    Colgate, J.E., Schenkel, G.: Passivity of a class of sampled-data systems: Application to haptic interfaces. In: Proceedings of the American Control Conference, pp. 3236–3240 (1994) Google Scholar
  9. 9.
    Gosline, A.H.C., Hayward, V.: Eddy current brakes for haptic interfaces: Design, identification, and control. IEEE/ASME Trans. Mechatron.13(6), 669–677 (2008) CrossRefGoogle Scholar
  10. 10.
    Hayward, V., Armstrong, B.: A new computational model of friction applied to haptic rendering. In: Corke, P., Trevelyan, J. (eds.) Experimental Robotics VI. Lecture Notes in Control and Information Sciences, vol. 250, pp. 403–412 (2000) CrossRefGoogle Scholar
  11. 11.
    Hayward, V., Astley, O.R.: Performance measures for haptic interfaces. In: Giralt, G., Hirzinger, G. (eds.) Robotics Research: The 7th International Symposium, pp. 195–207. Springer, Heidelberg (1996) CrossRefGoogle Scholar
  12. 12.
    Ho, P.P., Adelstein, B.D., Kazerooni, H.: Judging 2D versus 3D square-wave virtual gratings. In: Proceedings of the 12th International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 176–183 (2004) CrossRefGoogle Scholar
  13. 13.
    Hollins, M., Bensmaia, S.J.: The coding of roughness. Can. J. Exp. Psychol.61(3), 184–195 (2007) CrossRefGoogle Scholar
  14. 14.
    Hollins, M., Bensmaïa, S.J., Karlof, K., Young, F.: Individual differences in perceptual space for tactile textures: Evidence from multidimensional scaling. Percept. Psychophys.62(8), 1534–1544 (2000) CrossRefGoogle Scholar
  15. 15.
    Kaernbach, C.: Slope bias of psychometric functions derived from adaptive data. Percept. Psychophys.69(8), 1389–1398 (2001) CrossRefGoogle Scholar
  16. 16.
    Klatzky, R.L., Lederman, S.J.: Tactile roughness perception with a rigid link interposed between skin and surface. Percept. Psychophys.61(4), 591–607 (1999) CrossRefGoogle Scholar
  17. 17.
    Klatzky, R.L., Lederman, S.J., Hamilton, C., Grindley, M., Swendsen, R.H.: Feeling textures through a probe: Effects of probe and surface geometry and exploratory factors. Percept. Psychophys.65, 613–631 (2003) CrossRefGoogle Scholar
  18. 18.
    Lawrence, M.A., Kitada, R., Klatzky, R.L., Lederman, S.J.: Haptic roughness perception of linear gratings via bare finger or rigid probe. Perception36(4), 547–557 (2007) CrossRefGoogle Scholar
  19. 19.
    Lederman, S.J., Klatzky, R.L., Hamilton, C.L., Ramsay, G.I.: Perceiving roughness via a rigid probe: Psychophysical effects of exploration speed and mode of touch. Haptics-E: Electron. J. Haptics Res.1 (1999), online Google Scholar
  20. 20.
    Lederman, S., Klatzky, R., Hamilton, C., Grindley, M.: Perceiving surface roughness through a probe: Effects of applied force and probe diameter. In: Proceedings of the ASME DSCD-IMECE (2000) Google Scholar
  21. 21.
    Legge, G.D., Parish, D.H., Luebker, A., Wurm, L.H.: Psychophysics of reading. XI. Comparing color contrast and luminance contrast. J. Opt. Soc. Am. A7(10), 2002–2010 (1990) CrossRefGoogle Scholar
  22. 22.
    Leškovský, P., Cooke, T., Ernst, M.O., Harders, M.: Using multidimensional scaling to quantify the fidelity of haptic rendering of deformable objects. In: Proceedings of Eurohaptics, pp. 289–295 (2006) Google Scholar
  23. 23.
    Lin, M., Otaduy, M. (eds.): Haptic Rendering: Foundations, Algorithms and Applications. A. K. Peters, Ltd, Wellesley (2008) Google Scholar
  24. 24.
    Seuntiens, P., Meesters, L., Ijsselsteijn, W.: Perceived quality of compressed stereoscopic images: Effects of symmetric and asymmetric jpeg coding and camera separation. ACM Trans. Appl. Percept.3(2), 95–109 (2006) CrossRefGoogle Scholar
  25. 25.
    Smith, A.M., Chapman, C.E., Deslandes, M., Langlais, J.S., Thibodeau, M.P.: Role of friction and tangential force variation in the subjective scaling of tactile roughness. Exp. Brain Res.144(2), 211–223 (2002) CrossRefGoogle Scholar
  26. 26.
    Stokes, M., Fairchild, M.D., Berns, R.S.: Precision requirements for digital color reproduction. ACM Trans. Graph.11, 406–422 (1992) MATHCrossRefGoogle Scholar
  27. 27.
    Tolonen, T., Järveläinen, H.: Perceptual study of decay parameters in plucked string synthesis. In: Proceedings of the 109th Convention of Audio Engineering Society. Preprint no. 5205 (2000) Google Scholar
  28. 28.
    Tyrrell, R.A., Owens, D.A.: A rapid technique to assess the resting states of the eyes and other threshold phenomena: The modified binary search MOBS. Behav. Res. Meth. Instrum. Comput.20(2), 137–41 (1988) CrossRefGoogle Scholar
  29. 29.
    Weisenberger, J.M., Kreier, M.J., Rinker, M.A.: Judging the orientation of sinusoidal and square-wave virtual gratings presented via 2-DOF and 3-DOF haptic interfaces. Haptics-e1(4) (2000), online Google Scholar

Copyright information

© IEEE 2009

Authors and Affiliations

  1. 1.MontrealCanada

Personalised recommendations