Advertisement

Abstract

Advanced, synthetic haptic virtual environments require textured virtual surfaces. We found that texturing smooth surfaces often reduces the system passivity margin of a haptic simulation. As a result, a smooth virtual surface that can be rendered in a passive manner may loose this property once textured. We propose that any texture algorithm is associated with a characteristic number that expresses the relative change in loop gain. We further found that a passive virtual interaction can have severe unwanted artifacts if the synthesized force field is not conservative. The energy characteristics of seven algorithms are analyzed. Finally a new texture synthesis algorithm, which operates by modulating a friction force during scanning, is shown to have several advantages over previous ones.

Keywords

Force Field Jacobian Matrix Virtual Environment Virtual Object Characteristic Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors would like to thank Mohsen Mahvash and Andrew H.C. Gosline for insightful comments on earlier drafts of this paper. This research was supported in part by the Institute for Robotics and Intelligent Systems, andnserc, the Natural Sciences and Engineering Research Council of Canada.

References

  1. 1.
    Abbott, J.J., Okamura, A.M.: Effects of position quantization and sampling rate on virtual wall passivity. IEEE Trans. Robot.21(5), 952–964 (2005) CrossRefGoogle Scholar
  2. 2.
    Adams, R.J., Hannaford, B.: Stable haptic interaction with virtual environments. IEEE Trans. Robot. Autom.15(3), 465–474 (1999) CrossRefGoogle Scholar
  3. 3.
    Campion, G., Hayward, V.: Fundamental limits in the rendering of virtual haptic textures. In: Proceedings of the First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environments and Teleoperator Systems, WHC’05, pp. 263–270 (2005) CrossRefGoogle Scholar
  4. 4.
    Campion, G., Hayward, V.: On the synthesis of haptic textures. IEEE Trans. Robot.24(3), 527–536 (2008) CrossRefGoogle Scholar
  5. 5.
    Campion, G., Wang, Q., Hayward, V.: The Pantograph Mk-II: A haptic instrument. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS’05, pp. 723–728 (2005) Google Scholar
  6. 6.
    Choi, S., Tan, H.Z.: Perceived instability of virtual haptic texture. I. Experimental studies. Presence13(4), 395–415 (2004) CrossRefGoogle Scholar
  7. 7.
    Choi, S., Tan, H.Z.: Perceived instability of virtual haptic texture. II. Effect of collision-detection algorithm. Presence14(4), 463–481 (2005) CrossRefGoogle Scholar
  8. 8.
    Colgate, J.E., Schenkel, G.: Passivity of a class of sampled-data systems: Application to haptic interfaces. In: Proceedings of the American Control Conference, pp. 3236–3240 (1994) Google Scholar
  9. 9.
    Colgate, J.E., Grafing, P.E., Stanley, M.C., Schenkel, G.: Implementation of stiff virtual walls in force-reflecting interfaces. In: Virtual Reality Annual International Symposium, pp. 202–208 (1993) CrossRefGoogle Scholar
  10. 10.
    Costa, M.A., Cutkosky, M.R.: Roughness perception of haptically displayed fractal surfaces. In: Proceedings ASME IMECE Symposium on Haptic Interfaces for Virtual Environments and Teleoperator Systems, vol. 69-2, pp. 1073–1079 (2000) Google Scholar
  11. 11.
    Crossan, A., Williamson, J., Murray-Smith, R.: Haptic granular synthesis: Targeting, visualisation and texturing. In: Proceedings of the International Symposium on Non-visual & Multimodal Visualization, pp. 527–532. IEEE Press, New York (2004) Google Scholar
  12. 12.
    Diolaiti, N., Niemeyer, G., Barbagli, F., Salisbury, J.K.: Stability of haptic rendering: Discretization, quantization, time delay, and coulomb effects. IEEE Trans. Robot.22(2), 256–268 (2006) CrossRefGoogle Scholar
  13. 13.
    Frisoli, A.: Personal communication (2004) Google Scholar
  14. 14.
    Fritz, J.P., Barner, K.E.: Stochastic models for haptic textures. In: Stein, M.R. (ed.) Telemanipulator and Telepresence Technologies III. Proc. SPIE, vol. 2901, pp. 34–44 (1996) CrossRefGoogle Scholar
  15. 15.
    Goldstein, H.: Classical Mechanics. Addison-Wesley, Reading (1950) Google Scholar
  16. 16.
    Gosline, A.H., Campion, G., Hayward, V.: On the use of eddy current brakes as tunable, fast turn-on viscous dampers for haptic rendering. In: Proceedings of Eurohaptics, pp. 229–234 (2006) Google Scholar
  17. 17.
    Hardwick, A., Furner, S., Rush, J.: Tactile display of virtual reality from the world wide web—a potential access method for blind people. Displays18, 153–161 (1998) CrossRefGoogle Scholar
  18. 18.
    Hayward, V.: Haptic synthesis. In: Proceedings of the 8th International IFAC Symposium on Robot Control, SYROCO 2006, pp. 19–24 (2006) Google Scholar
  19. 19.
    Hayward, V., Armstrong, B.: A new computational model of friction applied to haptic rendering. In: Corke, P., Trevelyan, J. (eds.) Experimental Robotics VI. Lecture Notes in Control and Information Sciences, vol. 250, pp. 403–412 (2000) CrossRefGoogle Scholar
  20. 20.
    Hayward, V., Astley, O.R.: Performance measures for haptic interfaces. In: Giralt, G., Hirzinger, G. (eds.) Robotics Research: The 7th International Symposium, pp. 195–207. Springer, Heidelberg (1996) CrossRefGoogle Scholar
  21. 21.
    Hayward, V., Yi, D.: Change of height: An approach to the haptic display of shape and texture without surface normal. In: Siciliano, B., Dario, P. (eds.) Experimental Robotics VIII. Springer Tracts in Advanced Robotics, pp. 570–579. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  22. 22.
    Hill, D.J., Moylan, P.J.: Dissipative dynamical systems: Basic input-output and state properties. J. Franklin Inst.309(5), 327–357 (1980) MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Mahvash, M., Hayward, V.: High fidelity haptic synthesis of contact with deformable bodies. IEEE Comput. Graph. Appl.24(2), 48–55 (2004) CrossRefGoogle Scholar
  24. 24.
    Mahvash, M., Hayward, V.: High fidelity passive force reflecting virtual environments. IEEE Trans. Robot.21(1), 38–46 (2005) CrossRefGoogle Scholar
  25. 25.
    Melder, N., Harwin, W.S.: Force shading and bump mapping using the friction cone algorithm. In: Proceedings of the First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environments and Teleoperator Systems, WHC’05, pp. 573–575 (2005) CrossRefGoogle Scholar
  26. 26.
    Minsky, M., Lederman, S.J.: Simulated haptic textures: Roughness. In: Proceedings of the ASME IMECE Symposium on Haptic Interfaces for Virtual Environments and Teleoperator Systems, vol. DSC-Vol. 58, pp. 421–426 (1996) Google Scholar
  27. 27.
    Morgenbesser, H.B., Srinivasan, M.A.: Force shading for haptic shape perception. In: Proceedings of the Fifth Symposium on Haptic Interfaces for Virtual Environments and Teleoperators, ASME Dynamic Systems and Control Division, vol. DSC 58, pp. 407–412 (1996) Google Scholar
  28. 28.
    Otaduy, M.A., Jain, N., Sud, A., Lin, M.C.: Haptic display of interaction between textured models. In: Proceedings of IEEE Visualization, pp. 297–304 (2004) Google Scholar
  29. 29.
    Otaduy, M.A., Lin, M.C.: A perceptually-inspired force model for haptic texture rendering. In: Proceedings of the 1st Symposium on Applied Perception in Graphics and Visualization, pp. 123–126. ACM Press, New York (2004) CrossRefGoogle Scholar
  30. 30.
    Salisbury, J.K., Conti, F., Barbagli, F.: Haptic rendering: Introductory concepts. IEEE Comput. Graph. Appl.24(2), 24–32 (2004) CrossRefGoogle Scholar
  31. 31.
    Salisbury, K.J., Brock, D., Massie, T., Swarup, N., Zilles, C.: Haptic rendering: Programming touch interaction with virtual objects. In: Proceedings Symposium on Interactive 3D Graphics, pp. 123–130. ACM Press, New York (1995) Google Scholar
  32. 32.
    Siira, J., Pai, D.K.: Haptic textures—a stochastic approach. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 557–562 (1996) CrossRefGoogle Scholar
  33. 33.
    Wall, S.A., Harwin, W.S.: Effects of physical bandwidth on perception of virtual gratings. In: Proceedings of the Symposium on Haptic Interfaces for Virtual Environments and Teleoperators, ASME Dynamic Systems and Control Division, pp. 1033–1039 (2000) Google Scholar
  34. 34.
    Weisenberger, J.M., Kreier, M.J., Rinker, M.A.: Judging the orientation of sinusoidal and square-wave virtual gratings presented via 2-DOF and 3-DOF haptic interfaces. Haptics-e1(4) (2000), online Google Scholar
  35. 35.
    Zhou, K., Doyle, J.C.: Essentials of Robust Control. Prentice Hall, New York (1997) Google Scholar
  36. 36.
    Zilles, C.B., Salisbury, J.K.: A constraint-based god object method for haptic display. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS’95, vol. 3, pp. 146–151 (1995) Google Scholar

Copyright information

© IEEE 2008

Authors and Affiliations

  1. 1.MontrealCanada

Personalised recommendations