Advertisement

Abstract

This chapter presents a literature review of the previous work related to haptic textures. After an overview of the most relevant devices, control strategies, and algorithms used in haptics, the author presents the major findings on the perception of haptic textures and roughness. This review covers both the psychophysics experiments as well as the basic results of the physiology of tactile perception of textures and surfaces. The chapter is concluded with the discussion of the current understanding of the perception of virtual haptic textures generated with force feedback devices, thus setting the stage for the discussion of the research presented in the following chapters.

Keywords

Virtual Environment Force Feedback Haptic Device Groove Width Texture Perception 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abbott, J.J., Okamura, A.M.: Effects of position quantization and sampling rate on virtual wall passivity. IEEE Trans. Robot.21(5), 952–964 (2005) CrossRefGoogle Scholar
  2. 2.
    Adams, R.J., Hannaford, B.: Stable haptic interaction with virtual environments. IEEE Trans. Robot. Autom.15(3), 465–474 (1999) CrossRefGoogle Scholar
  3. 3.
    Adelstein, B.D., Ho, P., Kazerooni, H.: Kinematic design of a three degree of freedom parallel hand controller mechanism. In: Proceedings of the ASME Dynamic Systems and Control Division, vol. 58, pp. 539–545 (1996) Google Scholar
  4. 4.
    Basdogan, C., Ho, C.-H., Srinivasan, M.A.: A ray-based haptic rendering technique for displaying shape and texture of 3D objects in virtual environments. In: Proceedings of the Second PHANToM Users Group Workshop, vol. 61, pp. 77–84 (1997) Google Scholar
  5. 5.
    Bensmaïa, S.J., Hollins, M.: Complex tactile waveform discrimination. J. Acoust. Soc. Am.108(3), 1236–1245 (2000) CrossRefGoogle Scholar
  6. 6.
    Bensmaïa, S., Hollins, M., Yau, J.: Vibrotactile intensity and frequency information in the pacinian system: A psychophysical model. Percept. Psychophys.67(5), 828–832 (2005) CrossRefGoogle Scholar
  7. 7.
    Birznieks, I., Jenmalm, P., Goodwin, A.W., Johansson, R.S.: Encoding of direction of fingertip forces by human tactile afferents. J. Neurosci.21(20), 8222–8237 (2001) Google Scholar
  8. 8.
    Blake, D.T., Johnson, K.O., Hsiao, S.S.: Monkey cutaneous SAI and RA responses to raised and depressed scanned patterns: Effects of width, height, orientation, and a raised surround. J. Neurophysiol.78(5), 2503–2517 (1997) Google Scholar
  9. 9.
    Blinn, J.F.: Simulation of wrinkled surfaces. In: SIGGRAPH ’78: Proceedings of the 5th Annual Conference on Computer Graphics and Interactive Techniques, pp. 286–292. ACM Press, New York (1978) Google Scholar
  10. 10.
    Bonneton, E., Hayward, V.: Pantograph project, chapter: Implementation of a virtual wall. Technical report, McGill Research Center for Intelligent Machines, McGill University, Montreal, Canada (1994) Google Scholar
  11. 11.
    Campion, G., Wang, Q., Hayward, V.: The Pantograph Mk-II: A haptic instrument. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS’05, pp. 723–728 (2005) Google Scholar
  12. 12.
    Cascio, C.J., Sathian, K.: Temporal cues contribute to tactile perception of roughness. J. Neurosci.21(14), 5289–5296 (2001) Google Scholar
  13. 13.
    Cavusoglu, M.C., Feygin, D., Tendick, F.: A critical study of the mechanical and electrical properties of the PHANToM haptic interface and improvements for high performance control. Presence11(6), 555–568 (2002) CrossRefGoogle Scholar
  14. 14.
    Chapman, C.E., Tremblay, F., Jiang, W., Belingard, L., Meftah, E.-M.: Central neural mechanisms contributing to the perception of tactile roughness. Behav. Brain Res.132(1–2), 225–233 (2002) CrossRefGoogle Scholar
  15. 15.
    Choi, S., Tan, H.Z.: An analysis of perceptual instability during haptic texture rendering. In: Proceedings 10th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. HAPTICS 2002, Orlando, FL, USA, pp. 129–136 (2002) Google Scholar
  16. 16.
    Choi, S., Tan, H.Z.: An experimental study of perceived instability during haptic texture rendering: Effects of collision detection algorithm. In: Proceedings 11th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. HAPTICS 2003, Los Angeles, CA, USA, pp. 197–204 (2003) CrossRefGoogle Scholar
  17. 17.
    Choi, S., Tan, H.Z.: Aliveness: Perceived instability from a passive haptic texture rendering system. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 3, Las Vegas, NV, United States, pp. 2678–2683 (2003) Google Scholar
  18. 18.
    Choi, S., Tan, H.Z.: Effect of update rate on perceived instability of virtual haptic texture. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), vol. 4, Sendai, Japan, pp. 3577–3582 (2004) Google Scholar
  19. 19.
    Choi, S., Tan, H.Z.: Toward realistic haptic rendering of surface textures. IEEE Comput. Graph. Appl.24(2), 40–47 (2004) CrossRefGoogle Scholar
  20. 20.
    Choi, S., Tan, H.Z.: Perceived instability of virtual haptic texture. I. Experimental studies. Presence13(4), 395–415 (2004) CrossRefGoogle Scholar
  21. 21.
    Choi, S., Tan, H.Z.: Discrimination of virtual haptic textures rendered with different update rates. In: Proceedings of the First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environments and Teleoperator Systems WHC’05, Pisa, Italy, pp. 114–119 (2005) CrossRefGoogle Scholar
  22. 22.
    Choi, S., Tan, H.Z.: Perceived instability of virtual haptic texture. II. Effect of collision-detection algorithm. Presence14(4), 463–481 (2005) CrossRefGoogle Scholar
  23. 23.
    Choi, S., Tan, H.Z.: Perceived instability of virtual haptic texture. III. Effect of update rate. Presence16(3), 263–278 (2007) CrossRefGoogle Scholar
  24. 24.
    Choi, S., Walker, L., Tan, H.Z., Crittenden, S., Reifenberger, R.: Force constancy and its effect on haptic perception of virtual surfaces. ACM Trans. Appl. Percept.2(2), 89–105 (2005) CrossRefGoogle Scholar
  25. 25.
    Cholewiak, S., Tan, H.Z.: Frequency analysis of the detectability of virtual haptic gratings. In: WHC ’07: Proceedings of the Second Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 27–32. IEEE Computer Society, Washington (2007) CrossRefGoogle Scholar
  26. 26.
    Colgate, J.E., Brown, J.M.: Factors affecting the Z-width of a haptic display. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 3205–3210 (1994) Google Scholar
  27. 27.
    Colgate, J.E., Schenkel, G.: Passivity of a class of sampled-data systems: Application to haptic interfaces. In: Proceedings of the American Control Conference, pp. 3236–3240 (1994) Google Scholar
  28. 28.
    Colgate, J.E., Schenkel, G.G.: Passivity of a class of sampled-data systems: Application to haptic interfaces. J. Robot. Syst.14(1), 37–47 (1997) CrossRefGoogle Scholar
  29. 29.
    Connor, C., Johnson, K.: Neural coding of tactile texture: Comparison of spatial and temporal mechanisms for roughness perception. J. Neurosci.12(9), 3414–3426 (1992) Google Scholar
  30. 30.
    Connor, C., Hsiao, S., Phillips, J., Johnson, K.: Tactile roughness: Neural codes that account for psychophysical magnitude estimates. J. Neurosci.10(12), 3823–3836 (1990) Google Scholar
  31. 31.
    Costa, M.A., Cutkosky, M.R.: Roughness perception of haptically displayed fractal surfaces. In: Proceedings ASME IMECE Symposium on Haptic Interfaces for Virtual Environments and Teleoperator Systems, vol. 69-2, pp. 1073–1079 (2000) Google Scholar
  32. 32.
    Crossan, A., Williamson, J., Murray-Smith, R.: Haptic granular synthesis: Targeting, visualisation and texturing. In: Proceedings of the International Symposium on Non-visual & Multimodal Visualization, pp. 527–532. IEEE Press, New York (2004) Google Scholar
  33. 33.
    DiCarlo, J.J., Johnson, K.O., Hsiao, S.S.: Structure of receptive fields in area 3b of primary somatosensory cortex in the alert monkey. J. Neurosci.18(7), 2626–2645 (1998) Google Scholar
  34. 34.
    Diolaiti, N., Niemeyer, G., Barbagli, F., Salisbury, J.K.: Stability of haptic rendering: Discretization, quantization, time delay, and coulomb effects. IEEE Trans. Robot.22(2), 256–268 (2006) CrossRefGoogle Scholar
  35. 35.
    Diolaiti, N., Niemeyer, G., Tanner, N.A.: Wave haptics: Building stiff controllers from the natural motor dynamics. Int. J. Robot. Res.26(1), 5–21 (2007) CrossRefGoogle Scholar
  36. 36.
    Dodson, M.J., Goodwin, A.W., Browning, A.S., Gehring, H.M.: Peripheral neural mechanisms determining the orientation of cylinders grasped by the digits. J. Neurosci.18(1), 521–530 (1998) Google Scholar
  37. 37.
    Drewing, K., Ernst, M.O., Lederman, S..J., Klatzky, R.: Roughness and spatial density judgments on visual and haptic textures using virtual reality. In: Proceedings of EuroHaptics (2004) Google Scholar
  38. 38.
    Ekman, G., Hosman, J., Lindström, B.: Roughness, smoothness, and preference: A study of quantitative relations in individual subjects. J. Exp. Psychol.70(1), 18–26 (1965) CrossRefGoogle Scholar
  39. 39.
  40. 40.
  41. 41.
    Frisoli, A., Rocchi, F., Marcheschi, S., Dettori, A., Salsedo, F., Bergamasco, M.: A new force-feedback arm exoskeleton for haptic interaction in virtual environments. In: Proceedings of the First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environments and Teleoperator Systems WHC’05, pp. 195–201 (2005) CrossRefGoogle Scholar
  42. 42.
    Fritz, J.P., Barner, K.E.: Stochastic models for haptic textures. In: Stein, M.R. (ed.) Telemanipulator and Telepresence Technologies III. Proc. SPIE, vol. 2901, pp. 34–44 (1996) CrossRefGoogle Scholar
  43. 43.
    Gescheider, G.A., Bolanowski, S.J., Greenfield, T.C., Brunette, K.E.: Perception of the tactile texture of raised-dot patterns: A multidimensional analysis. Somatosens. Motor Res.22(3), 127–140 (2005) CrossRefGoogle Scholar
  44. 44.
    Gibson, J.J.: Observations on active touch. Psychol. Rev.69, 477–491 (1962) CrossRefGoogle Scholar
  45. 45.
    Gil, J.J., Sanchez, E., Hulin, T., Preusche, C., Hirzinger, G.: Stability boundary for haptic rendering: Influence of damping and delay. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 124–129 (2007) Google Scholar
  46. 46.
    Gillespie, B., Cutkosky, M.: Stable user-specific rendering of the virtual wall. In: Proceedings of the ASME Dynamic Systems and Control Division, vol. DSC-Vol. 58, pp. 397–406 (1996) Google Scholar
  47. 47.
    Goodwin, A., John, K., Sathian, K., Darian-Smith, I.: Spatial and temporal factors determining afferent fiber responses to a grating moving sinusoidally over the monkey’s fingerpad. J. Neurosci.9(4), 1280–1293 (1989) Google Scholar
  48. 48.
    Goodwin, A., Browning, A., Wheat, H.: Representation of curved surfaces in responses of mechanoreceptive afferent fibers innervating the monkey’s fingerpad. J. Neurosci.15(1), 798–810 (1995) Google Scholar
  49. 49.
    Goodwin, A.W., Wheat, H.E.: Effects of nonuniform fiber sensitivity, innervation geometry, and noise on information relayed by a population of slowly adapting type I primary afferents from the fingerpad. J. Neurosci.19(18), 8057–8070 (1999) Google Scholar
  50. 50.
    Goodwin, A.W., Macefield, V.G., Bisley, J.W.: Encoding object curvature by tactile afferents from human fingers. J. Neurophysiol.78, 2881–2888 (1997) Google Scholar
  51. 51.
    Gordon, I.E., Cooper, C.: Improving one’s touch. Nature256, 203–204 (1975) CrossRefGoogle Scholar
  52. 52.
    Green, D.F., Salisbury, J.K.: Texture sensing and simulation using the PHANToM: Towards remote sensing of soil properties. In: Proceedings of the Second Phantom Users Group Workshop (1997) Google Scholar
  53. 53.
    Hannaford, B., Ryu, J.H.: Time-domain passivity control of haptic interfaces. IEEE Trans. Robot. Autom.18(1), 1–10 (2002) CrossRefGoogle Scholar
  54. 54.
    Hardwick, A., Furner, S., Rush, J.: Tactile display of virtual reality from the world wide web—a potential access method for blind people. Displays18, 153–161 (1998) CrossRefGoogle Scholar
  55. 55.
    Harwin, W.S., Wall, S.A.: Mechatronic design of a high frequency probe for haptic interaction. In: Proceedings 6th International Conference on Mechatronics and Machine Vision in Practice, pp. 111–118 (1999) Google Scholar
  56. 56.
    Hayward, V., Yi, D.: Change of height: An approach to the haptic display of shape and texture without surface normal. In: Siciliano, B., Dario, P. (eds.) Experimental Robotics VIII. Springer Tracts in Advanced Robotics, pp. 570–579. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  57. 57.
    Ho, C.-H., Basdogan, C., Srinivasan, M.A.: Efficient point-based rendering techniques for haptic display of virtual objects. Presence8(5), 477–491 (1999) CrossRefGoogle Scholar
  58. 58.
    Ho, P.P., Adelstein, B.D., Kazerooni, H.: Judging 2D versus 3D square-wave virtual gratings. In: Proceedings of the 12th International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 176–183 (2004) CrossRefGoogle Scholar
  59. 59.
    Hollins, M., Bensmaia, S.J.: The coding of roughness. Can. J. Exp. Psychol.61(3), 184–195 (2007) CrossRefGoogle Scholar
  60. 60.
    Hollins, M., Risner, S.R.: Evidence for the duplex theory of tactile texture perception. Percept. Psychophys.62(4), 695–705 (2000) CrossRefGoogle Scholar
  61. 61.
    Hollins, M., Faldowski, R., Rao, S., Young, F.: Perceptual dimensions of tactile surface texture: A multidimensional scaling analysis. Percept. Psychophys.54, 697–705 (1993) CrossRefGoogle Scholar
  62. 62.
    Hollins, M., Fox, A., Bishop, C.: Imposed vibration influences perceived tactile smoothness. Perception29, 1455–1465 (2000) CrossRefGoogle Scholar
  63. 63.
    Hollins, M., Bensmaïa, S.J., Karlof, K., Young, F.: Individual differences in perceptual space for tactile textures: Evidence from multidimensional scaling. Percept. Psychophys.62(8), 1534–1544 (2000) CrossRefGoogle Scholar
  64. 64.
    Hollins, M., Bensmaïa, S.J., Washburn, S.: Vibrotactile adaptation impairs discrimination of fine, but not coarse, textures. Somatosens. Motor Res.18(10), 253–262 (2001) Google Scholar
  65. 65.
    Hollins, M., Lorenz, F., Harper, D.: Somatosensory coding of roughness: The effect of texture adaptation in direct and indirect touch. J. Neurosci.26(20), 5582–5588 (2006) CrossRefGoogle Scholar
  66. 66.
    Hulin, T., Preusche, C., Hirzinger, G.: Stability boundary for haptic rendering: Influence of physical damping. In: Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference on, pp. 1570–1575 (2006) CrossRefGoogle Scholar
  67. 67.
    Immersion Corporation: Impulse Engine 2000.http://www.immersion.com/
  68. 68.
  69. 69.
  70. 70.
    Johnson, K.O.: The roles and functions of cutaneous mechanoreceptors. Curr. Opin. Neurobiol.11(4), 455–461 (2001) CrossRefGoogle Scholar
  71. 71.
    Johnson, K.O., Hsiao, S.S.: Neural mechanisms of tactual form and texture perception. Annu. Rev. Neurosci.15(1), 227–250 (1992) CrossRefGoogle Scholar
  72. 72.
    Johnson, K.O., Yoshioka, T., Vega-Bermudez, F.: Tactile functions of mechanoreceptive afferents innervating the hand. J. Clin. Neurophysiol.17, 539–558 (2000) CrossRefGoogle Scholar
  73. 73.
    Klatzky, R.L., Lederman, S.J.: Tactile roughness perception with a rigid link interposed between skin and surface. Percept. Psychophys.61(4), 591–607 (1999) CrossRefGoogle Scholar
  74. 74.
    Klatzky, R.L., Lederman, S.J.: The perceived roughness of resistive virtual textures: I. Rendering by a force-feedback mouse. ACM Trans. Appl. Percept.3(1), 1–14 (2006) CrossRefGoogle Scholar
  75. 75.
    Klatzky, R.L., Lederman, S.J., Hamilton, C., Grindley, M., Swendsen, R.H.: Feeling textures through a probe: Effects of probe and surface geometry and exploratory factors. Percept. Psychophys.65, 613–631 (2003) CrossRefGoogle Scholar
  76. 76.
    Knibestol, M., Vallbo, A.B.: Intensity of sensation related to activity of slowly adapting mechanoreceptive units in the human hand. J. Physiol.300(1), 251–267 (1980) Google Scholar
  77. 77.
    Kocsis, M., Tan, H.Z., Adelstein, B.D.: Discriminability of real and virtual surfaces with triangular gratings. In: WHC ’07: Proceedings of the Second Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 348–353. IEEE Computer Society, Washington (2007) CrossRefGoogle Scholar
  78. 78.
    Kontarinis, D.A., Howe, R.D.: Tactile display of vibratory information in teleoperation and virtual environments. Presence4(4), 387–402 (1995) Google Scholar
  79. 79.
    Kornbrot, D., Penn, P., Petrie, H., Furner, S., Hardwick, A.: Roughness perception in haptic virtual reality for sighted and blind people. Percept. Psychophys.69(4), 502–512 (2007) CrossRefGoogle Scholar
  80. 80.
    Kuchenbecker, K.J., Niemeyer, G.: Improving telerobotic touch via high-frequency acceleration matching. In: Proceedings of the IEEE Int. Conf. on Robotics and Automation, 2006 Google Scholar
  81. 81.
    Kuchenbecker, K.J., Fiener, J., Niemeyer, G.: Improving contact realism through event-based haptic feedback. IEEE Trans. Vis. Comput. Graph.12(2), 219–230 (2006) CrossRefGoogle Scholar
  82. 82.
    LaMotte, R.H., Whitehouse, J.: Tactile detection of a dot on a smooth surface: Peripheral neural events. J. Neurophysiol.56, 1109–1128 (1986) Google Scholar
  83. 83.
    Lawrence, M.A., Kitada, R., Klatzky, R.L., Lederman, S.J.: Haptic roughness perception of linear gratings via bare finger or rigid probe. Perception36(4), 547–557 (2007) CrossRefGoogle Scholar
  84. 84.
    Lederman, S., Klatzky, R., Hamilton, C., Grindley, M.: Perceiving surface roughness through a probe: Effects of applied force and probe diameter. In: Proceedings of the ASME DSCD-IMECE (2000) Google Scholar
  85. 85.
    Lederman, S.J.: Tactile roughness of grooved surfaces: The touching process and effects of macro- and microsurface structure. Percept. Psychophys.16(2), 385–395 (1974) CrossRefGoogle Scholar
  86. 86.
    Lederman, S.J.: “improving one’s touch” …and more. Percept. Psychophys.24(2), 154–160 (1978) CrossRefGoogle Scholar
  87. 87.
    Lederman, S.J.: The perception of surface roughness by active and passive touch. Bull. Psychon. Soc.18(5), 253–255 (1981) Google Scholar
  88. 88.
    Lederman, S.J.: Tactual roughness perception: Spatial and temporal determinants. Can. J. Psychol.37(4), 498–511 (1983) CrossRefGoogle Scholar
  89. 89.
    Lederman, S.J., Taylor, M.M.: Fingertip force, surface geometry, and the perception of roughness by active touch. Percept. Psychophys.12, 401–408 (1972) CrossRefGoogle Scholar
  90. 90.
    Lederman, S.J., Loomis, J.M., Williams, D.A.: The role of vibration in tactual perception of roughness. Percept. Psychophys.32(2), 109–116 (1982) CrossRefGoogle Scholar
  91. 91.
    Lederman, S.J., Klatzky, R.L., Hamilton, C.L., Ramsay, G.I.: Perceiving roughness via a rigid probe: Psychophysical effects of exploration speed and mode of touch. Haptics-E: Electron. J. Haptics Res.1 (1999), online Google Scholar
  92. 92.
    Lederman, S.J., Klatzky, R.L., Tong, C., Hamilton, C.: The perceived roughness of resistive virtual textures: II. Effects of varying viscosity with a force-feedback device. ACM Trans. Appl. Percept.3(1), 15–30 (2006) CrossRefGoogle Scholar
  93. 93.
    Levesque, V., Hayward, V.: Tactile graphics rendering using three laterotactile drawing primitives. In: Proceedings of the Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 429–436 (2008) CrossRefGoogle Scholar
  94. 94.
    Logitech: G27 Racing Wheel.http://www.logitech.com/en-ca/gaming/wheels
  95. 95.
    Louw, S., Kappers, A.M.L., Koenderink, J.J.: Haptic detection thresholds of Gaussian profiles over the whole range of spatial scales. Exp. Brain Res.132, 369–374 (2000) CrossRefGoogle Scholar
  96. 96.
    MacLean, K.E., Snibbe, S.S.: An architecture for haptic control of media. In: Proceedings of the Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 219–228 (1999) Google Scholar
  97. 97.
    Mahvash, M., Hayward, V.: High fidelity passive force reflecting virtual environments. IEEE Trans. Robot.21(1), 38–46 (2005) CrossRefGoogle Scholar
  98. 98.
    Massie, T.H.: Initial haptic explorations with the PHANToM virtual touch through point interaction. Master’s thesis, Massachusetts Institute of Technology (1996) Google Scholar
  99. 99.
    Massie, T.H., Salisbury, J.K.: The PHANToM haptic interface: A device for probing virtual objects. In: Proceedings ASME IMECE Symposium on Haptic Interfaces for Virtual Environments and Teleoperator Systems, vol. DSC-Vol. 55-1, pp. 295–301 (1994) Google Scholar
  100. 100.
    Meenes, M., Zigler, M.J.: An experimental study of the perceptions roughness and smoothness. Am. J. Psychol.34(4), 542–549 (1923) CrossRefGoogle Scholar
  101. 101.
    Meftah, E.M., Belingard, L., Chapman, C.E.: Relative effects of the spatial and temporal characteristics of scanned surfaces on human perception of tactile roughness using passive touch. Exp. Brain Res.132(3), 351–361 (2000) CrossRefGoogle Scholar
  102. 102.
    Miller, B.E., Colgate, J.E., Freeman, R.A.: Guaranteed stability of haptic systems with nonlinear virtual environments. IEEE Trans. Robot. Autom.16(6), 712–719 (2000) CrossRefGoogle Scholar
  103. 103.
    Minsky, M.: Computational haptics: The sandpaper system for synthesizing texture for a force-feedback display. PhD thesis, Massachusetts Institute of Technology (1995) Google Scholar
  104. 104.
    Minsky, M., Lederman, S.J.: Simulated haptic textures: Roughness. In: Proceedings of the ASME IMECE Symposium on Haptic Interfaces for Virtual Environments and Teleoperator Systems, DSC-Vol. 58, pp. 421–426 (1996) Google Scholar
  105. 105.
    Minsky, M., Ming, O., Steele, O., Brooks, Jr., F.P., Behensky, M.: Feeling and seeing: Issues in force display. In: Proceedings of Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’90, vol. 24(2), pp. 235–241 (1990) Google Scholar
  106. 106.
    Morley, J.W., Goodwin, A.W., Darian-Smith, I.: Tactile discrimination of gratings. Exp. Brain Res.49(2), 291–299 (1983) CrossRefGoogle Scholar
  107. 107.
    Nefs, H.T., Kappers, A.M.L., Koenderink, J.J.: Amplitude and spatial-period discrimination in sinusoidal gratings by dynamic touch. Perception30, 1263–1274 (2001) CrossRefGoogle Scholar
  108. 108.
    Niemeyer, G., Slotine, J.-J.: Stable adaptive teleoperation. IEEE J. Ocean. Eng.16(1), 152–162 (1991) CrossRefGoogle Scholar
  109. 109.
    Niemeyer, G., Slotine, J.-J.E.: Telemanipulation with time delays. Int. J. Robot. Res.23(9), 873–890 (2004) CrossRefGoogle Scholar
  110. 110.
    Okamura, A., Dennerlein, J.T., Howe, R.D.: Vibration feedback models for virtual environments. In: Proceedings of IEEE International Conference on Robotics and Automation, vol. 3, pp. 2485–2490 (1998) CrossRefGoogle Scholar
  111. 111.
    Okamura, A., Hage, M., Dennerlein, J., Cutkosky, M.: Improving reality-based models for vibration feedback. In: Proceedings of the ASME Dynamic Systems and Control Division, vol. 69, pp. 1117–1124 (2000) Google Scholar
  112. 112.
    Okamura, A.M., Cutkosky, M.R., Dennerlein, J.T.: Reality-based models for vibration feedback in virtual environments. IEEE/ASME Trans. Mechatron.6(3), 245–252 (2001) CrossRefGoogle Scholar
  113. 113.
    Okamura, A.M., Costa, M.A., Turner, M.L., Richard, C., Cutkosky, M.R.: Haptic surface exploration. In: The Sixth International Symposium on Experimental Robotics VI, pp. 423–432. Springer, London (2000) CrossRefGoogle Scholar
  114. 114.
    Otaduy, M.A., Lin, M.C.: A perceptually-inspired force model for haptic texture rendering. In: Proceedings of the 1st Symposium on Applied Perception in Graphics and Visualization, pp. 123–126. ACM Press, New York (2004) CrossRefGoogle Scholar
  115. 115.
    Pai, D.K., van den Doel, K., James, D.L., Lang, J., Lloyd, J.E., Richmond, J.L., Yau, S.H.: Scanning physical interaction behavior of 3D objects. In: SIGGRAPH ’01: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 87–96. ACM Press, New York (2001) CrossRefGoogle Scholar
  116. 116.
    Paré, M., Elde, R., Mazurkiewicz, J.E., Smith, A.M., Rice, F.L.: The Meissner corpuscle revised: A multiafferented mechanoreceptor with nociceptor immunochemical properties. J. Neurosci.21(18), 7236–7246 (2001) Google Scholar
  117. 117.
    Paré, M., Smith, A.M., Rice, F.L.: Distribution and terminal arborizations of cutaneous mechanoreceptors in the glabrous finger pads of the monkey. J. Comp. Neurol.445, 347–359 (2002) CrossRefGoogle Scholar
  118. 118.
    Paré, M., Behets, C., Cornu, O.: Paucity of presumed Ruffini Corpuscles in the index fingerpad of humans. J. Comp. Neurol.356, 260–266 (2003) CrossRefGoogle Scholar
  119. 119.
    Phillips, J.R., Johnson, K.O.: Tactile spatial resolution: II. Neural representation of bars, edges, and gratings in monkey primary afferents. J. Neurophysiol.46, 1192–1203 (1981) Google Scholar
  120. 120.
    Picard, D., Dacremont, C., Valentin, D., Giboreau, A.: Perceptual dimensions of tactile textures. Acta Psychol.114, 165–184 (2003) CrossRefGoogle Scholar
  121. 121.
    Quanser: Haptic Devices.http://www.quanser.com/
  122. 122.
    Ramstein, C., Hayward, V.: The pantograph: A large workspace haptic device for a multi-modal human-computer interaction. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI’04, ACM/SIGCHI Companion-4/94, pp. 57–58 (1994) Google Scholar
  123. 123.
    Richard, C., Cutkosky, M., MacLean, K.E.: Friction identification for haptic display. In: Proceedings of the 8th Ann. Symp. on Haptic Interfaces for Virtual Environment and Teleoperator Systems. ASME/IMECE, London (1999) Google Scholar
  124. 124.
    Richard, C., Okamura, A.M., Cutkosky, M.R.: Getting a feel for dynamics: Using haptic interface kits for teaching dynamics and controls. In: American Society of Mechanical Engineers, Dynamic Systems and Control Division, vol. 61, pp. 153–157 (1997) Google Scholar
  125. 125.
    Rosen, M.J., Adelstein, B.D.: Design of a two degree-of-freedom manipulandum for tremor research. In: Proceedings of the IEEE Frontiers of Engineering and Computing in Health Care, pp. 47–51 (1984) Google Scholar
  126. 126.
    Ryu, J.-H., Kwon, D.-S., Hannaford, B.: Control of a flexible manipulator with noncollocated feedback: Time-domain passivity approach. IEEE Trans. Robot.20(4), 776–780 (2004) CrossRefGoogle Scholar
  127. 127.
    Ryu, J.-H., SangKim, Y., Hannaford, B.: Sampled- and continuous-time passivity and stability of virtual environments. IEEE Trans. Robot.20, 772–776 (2004) CrossRefGoogle Scholar
  128. 128.
    Ryu, J.H., Preusche, C., Hannaford, B., Hirzinger, G.: Time domain passivity control with reference energy following. IEEE Trans. Control Syst. Technol.13(5), 737–742 (2005) CrossRefGoogle Scholar
  129. 129.
    Salcudean, S.E., Vlaar, T.D.: On the emulation of stiff walls and static friction with a magnetically levitated inputoutput device. J. Dyn. Syst.119(127–132), 127–132 (1997) MATHCrossRefGoogle Scholar
  130. 130.
    Sathian, K., Goodwin, A.W., John, K.T., Darian-Smith, I.: Perceived roughness of a grating: Correlation with responses of mechanoreceptive afferents innervating the monkey’s fingerpad. J. Neurosci.9(4), 1273–1279 (1989) Google Scholar
  131. 131.
  132. 132.
    Siira, J., Pai, D.K.: Haptic textures—a stochastic approach. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 557–562 (1996) CrossRefGoogle Scholar
  133. 133.
    Sirouspour, M.R., DiMaio, S.P., Salcudean, S.E., Abolmaesumi, P., Jones, C.: Haptic interface control-design issues and experiments with a planar device. In: Proceedings of IEEE International Conference on Robotics and Automation, vol. 1, pp. 789–794 (2000) Google Scholar
  134. 134.
    Smith, A.M., Chapman, C.E., Deslandes, M., Langlais, J.S., Thibodeau, M.P.: Role of friction and tangential force variation in the subjective scaling of tactile roughness. Exp. Brain Res.144(2), 211–223 (2002) CrossRefGoogle Scholar
  135. 135.
    Srinivasan, M.A., Whitehouse, J.M., LaMotte, R.H.: Tactile detection of slip: Surface microgeometry and peripheral neural codes. J. Neurophysiol.63(6), 1323–1332 (1990) Google Scholar
  136. 136.
    Steger, R., Lin, K., Adelstein, B.D., Kazerooni, H.: Design of a passively balanced spatial linkage haptic interface. ASME J. Mech. Des.126, 984–991 (2004) CrossRefGoogle Scholar
  137. 137.
    Stevens, J.C., Harris, J.R.: The scaling of subjective roughness and smoothness. J. Exp. Psychol.64, 498–494 (1962) CrossRefGoogle Scholar
  138. 138.
    Talbot, W.H., Darian-Smith, I., Kornhuber, H.H., Mountcastle, V.B.: The sense of flutter-vibration: Comparison of the human capacity with response patterns of mechanoreceptive afferents from the monkey hand. J. Neurophysiol.31(2), 301–334 (1968) Google Scholar
  139. 139.
    Tan, H.Z., Adelstein, B.D., Traylor, R., Kocsis, M., Hirleman, E.D.: Discrimination of real and virtual high-definition textured surfaces. In: HAPTICS ’06: Proceedings of the Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, p. 1. IEEE Computer Society, Washington (2006) Google Scholar
  140. 140.
    Taylor, M.M., Lederman, S.J.: Tactile roughness of grooved surfaces: A model and the effect of friction. Percept. Psychophys.17(1), 23–26 (1975) CrossRefGoogle Scholar
  141. 141.
    Tiest, W.M.B., Kappers, A.M.L.: Analysis of haptic perception of materials by multidimensional scaling and physical measurements of roughness and compressibility. Acta Psychol.121(1), 1–20 (2006) CrossRefGoogle Scholar
  142. 142.
    Unger, B., Hollis, R., Klatzky, R.: The geometric model for perceived roughness applies to virtual textures. In: Proceedings of the Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (2008) Google Scholar
  143. 143.
    Vega-Bermudez, F., Johnson, K.O.: SA1 and RA receptive fields, response variability, and population responses mapped with a probe array. J. Neurophysiol.81(6), 2701–2710 (1999) Google Scholar
  144. 144.
    Wall, S.A., Harwin, W.S.: Effects of physical bandwidth on perception of virtual gratings. In: Proceedings of the Symposium on Haptic Interfaces for Virtual Environments and Teleoperators, ASME Dynamic Systems and Control Division, pp. 1033–1039 (2000) Google Scholar
  145. 145.
    Weisenberger, J.M., Krier, M.J., Rinker, M.A., Kreidler, S.M.: The role of the end-effector in the perception of virtual surfaces presented via force-feedback haptic devices. In: Proceedings of the ASME Dynamic Systems and Control Division (1999) Google Scholar
  146. 146.
    Weisenberger, J.M., Kreier, M.J., Rinker, M.A.: Judging the orientation of sinusoidal and square-wave virtual gratings presented via 2-DOF and 3-DOF haptic interfaces. Haptics-E1(4) (2000), online Google Scholar
  147. 147.
    West, A.M., Cutkosky, M.R.: Detection of real and virtual fine surface features with a haptic interface and stylus. In: Proceedings of the ASME Intl. Mech. Eng. Congress: Dynamic Systems and Control Division (Haptic Interfaces for Virtual Environments and Teleoperator Systems), vol. DSC-Vol. 61, pp. 159–166 (1997) Google Scholar
  148. 148.
    Wheat, H.E., Goodwin, A.W.: Tactile discrimination of gaps by slowly adapting afferents: Effects of population parameters and anisotropy in the fingerpad. J. Neurophysiol.84(3), 1430–1444 (2000) Google Scholar
  149. 149.
    Witney, A.G., Wing, A., Thonnard, J.-L., Smith, A.M.: The cutaneous contribution to adaptive precision grip. Trends Neurosci.27, 637–643 (2004) CrossRefGoogle Scholar
  150. 150.
    Yoshioka, T., Bensmaïa, S.J., Craig, J.C., Hsiao, S.S.: Texture perception through direct and indirect touch: An analysis of perceptual space for tactile textures in two modes of exploration. Somatosens. Motor Res.24, 53–70 (2007) CrossRefGoogle Scholar
  151. 151.
    Zigler, M.J.: Review of Katz “Der Augbau der Tastwelt”! Psychol. Bull.23, 326–336 (1926) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.MontrealCanada

Personalised recommendations