Advertisement

Lymphedema pp 515-522 | Cite as

Radiation Complications

  • Kathleen C. Horst
Chapter

Abstract

The risk and etiology of lymphedema in oncology patients is multifactorial. After a diagnosis of cancer is established, treatment decisions must achieve a balance between tumor eradication and possible treatment-related complications and morbidity. Although radiation treatments alone can sometimes induce lymphedema, the development of lymphedema in oncology patients is more often the result of a combination of injuries, including surgery and postoperative radiotherapy. When evaluating the incremental impact of radiation on the development of lymphedema for various tumor types, it is therefore important to consider the type of surgical procedure performed as well as the radiotherapy treatment techniques utilized.

Keywords

Sentinel Lymph Node Biopsy Axillary Lymph Node Dissection Postoperative Radiotherapy Lymphatic Endothelial Cell Vulvar Cancer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Petrek JA, Senie RT, Peters M, et al. Lymphedema in a cohort of breast carcinoma survivors 20 years after diagnosis. Cancer. 2001;92:1368-1377.PubMedCrossRefGoogle Scholar
  2. 2.
    Mortimer PS, Simmonds RH, Rezvani M, et al. Time-related changes in lymphatic clearance in pig skin after a single dose of 18 Gy of X rays. Br J Radiol. 1991;64:1140-1146.PubMedCrossRefGoogle Scholar
  3. 3.
    Jackowski S, Janusch M, Fiedler E, et al. Radiogenic lymphangiogenesis in the skin. Am J Pathol. 2007;11:338-348.Google Scholar
  4. 4.
    Avraham T, Yan A, Zampell JC, et al. Radiation therapy causes loss of dermal lymphatic vessels and interferes with lymphatic function by TGF-{beta}1-mediated tissue fibrosis. Am J Physiol Cell Physiol. 2010;299:589-605.CrossRefGoogle Scholar
  5. 5.
    Martin M, Lefaix J, Delanian S. TGF-beta1 and radiation fibrosis: A master switch and a specific therapeutic target? Int J Radiat Oncol Biol Phys. 2000;47:277-290.PubMedCrossRefGoogle Scholar
  6. 6.
    Yarnold J, Brotons MC. Pathogenetic mechanisms in radiation fibrosis. Radiother Oncol. 2010;97(1):149-161.PubMedCrossRefGoogle Scholar
  7. 7.
    Clavin NW, Avraham T, Fernandez J, et al. TGF-beta1 is a negative regulator of lymphatic regeneration during wound repair. Am J Physiol Heart Circ Physiol. 2008;295:H2113-H2127.PubMedCrossRefGoogle Scholar
  8. 8.
    Oka M, Iwata C, Suzuki HI, et al. Inhibition of endogenous TGF-beta signaling enhances lymphangiogenesis. Blood. 2008;111:4571-4579.PubMedCrossRefGoogle Scholar
  9. 9.
    Powell SN, Taghian AG, Kachnic LA, et al. Risk of lymphedema after regional nodal irradiation with breast conservation therapy. Int J Radiat Oncol Biol Phys. 2003;55(5):1209-1215.PubMedCrossRefGoogle Scholar
  10. 10.
    Meric F, Buchholz TA, Mirza NQ, et al. Long-term complications associated with breast-conservation surgery and radiotherapy. Ann Surg Oncol. 2002;9(6):543-549.PubMedCrossRefGoogle Scholar
  11. 11.
    Hayes SB, Freedman GM, Li T, et al. Does axillary boost increase lymphedema compared with supraclavicular radiation alone after breast conservation? Int J Radiat Oncol Biol Phys. 2008;72(5):1449-1455.PubMedCrossRefGoogle Scholar
  12. 12.
    Deutsch M, Land S, Begovic M, et al. The incidence of arm edema in women with breast cancer randomized on the National Surgical Adjuvant Breast and Bowel Project study B-04 to radical mastectomy versus total mastectomy and radiotherapy versus total mastectomy alone. Int J Radiat Oncol Biol Phys. 2008;70(4):1020-1024.PubMedCrossRefGoogle Scholar
  13. 13.
    Ragaz J, Olivotto IA, Spinelli JJ, et al. Locoregional radiation therapy in patients with high risk breast cancer receiving adjuvant chemotherapy: 20-year results of the British Columbia randomized trial. J Natl Cancer Inst. 2005;97(2):116-126.PubMedCrossRefGoogle Scholar
  14. 14.
    Hinrichs CS, Watroba NL, Rezaishiraz H, et al. Lymphedema secondary to postmastectomy radiation: incidence and risk factors. Ann Surg Oncol. 2004;11(6):573-580.PubMedCrossRefGoogle Scholar
  15. 15.
    Johansson S, Svensson H, Denekamp J. Dose response and latency for radiation-induced fibrosis, edema, and neuropathy in breast cancer patients. Int J Radiat Oncol Biol Phys. 2002;52(5):1207-1219.PubMedCrossRefGoogle Scholar
  16. 16.
    Ashikaga T, Krag DN, Land SR, et al. Morbidity results from the NSABP B-32 trial comparing sentinel lymph node dissection versus axillary dissection. J Surg Oncol. 2010;102:111-118.PubMedCrossRefGoogle Scholar
  17. 17.
    Leitch A, Meek A, Smith R, et al. Workgroup I: treatment of the axilla with surgery and radiation-preoperative and postoperative risk assessment. Cancer. 1998;S83:2877-2879.CrossRefGoogle Scholar
  18. 18.
    Graham P, Jagavkar R, Browne L, et al. Supraclavicular radiotherapy must be limited laterally by the coracoid to avoid significant adjuvant breast nodal radiotherapy lymphoedema risk. Australas Radiol. 2006;50(6):578-582.PubMedCrossRefGoogle Scholar
  19. 19.
    Cormier JN, Askew RL, Mungovan KS, et al. Lymphedema beyond breast cancer. A systematic review and meta-analysis of cancer-related secondary lymphedema. Cancer. 2010;116(22):5138-5149.PubMedCrossRefGoogle Scholar
  20. 20.
    Ballo MT, Ang KK. Radiotherapy for cutaneous malignant melanoma: rationale and indications. Oncology. 2004;18(1):99-107.PubMedGoogle Scholar
  21. 21.
    Lee RJ, Gibbs JF, Proulx GM, et al. Nodal basin recurrence following lymph node dissection for melanoma: implications for adjuvant radiotherapy. Int J Radiat Oncol Biol Phys. 2000;46(2):467-474.PubMedCrossRefGoogle Scholar
  22. 22.
    Barranco SC, Romsdahl MM, Humphrey RM. The radiation response of human malignant melanoma cells grown in vitro. Cancer Res. 1971;31:830-833.PubMedGoogle Scholar
  23. 23.
    Dewey DL. The radiosensitivity of melanoma cells in culture. Br J Radiol. 1971;44:816-817.PubMedCrossRefGoogle Scholar
  24. 24.
    Overgaard J. The role of radiotherapy in recurrent and metastatic malignant melanoma: a clinical radiobiological study. Int J Radiat Oncol Biol Phys. 1986;12(6):867-872.PubMedCrossRefGoogle Scholar
  25. 25.
    Seegenschmiedt MH, Keilholz L, Altendorf-Hofmann A, et al. Palliative radiotherapy for recurrent and metastatic malignant melanoma: prognostic factors for tumor response and long-term outcome: a 20-year experience. Int J Radiat Oncol Biol Phys. 1999;44(3):607-618.PubMedCrossRefGoogle Scholar
  26. 26.
    Beadle BM, Guadagnolo BA, Ballo MT, et al. Radiation therapy field extent for adjuvant treatment of axillary metastases from malignant melanoma. Int J Radiat Oncol Biol Phys. 2009;73(5):1376-1382.PubMedCrossRefGoogle Scholar
  27. 27.
    Agrawal S, Kane JM, Guadagnolo BA, et al. The benefits of adjuvant radiation therapy after therapeutic lymphadenectomy for clinically advanced, high-risk, lymph node-metastatic melanoma. Cancer. 2009;115:5836-5844.PubMedCrossRefGoogle Scholar
  28. 28.
    Ballo MT, Zagars GK, Gershenwald JE, et al. A critical assessment of adjuvant radiotherapy for inguinal lymph node metastases from melanoma. Ann Surg Oncol. 2004;11(12):1079-1084.PubMedCrossRefGoogle Scholar
  29. 29.
    Burmeister BH, Smithers BM, Davis S, et al. Radiation therapy following nodal surgery for melanoma: an analysis of late toxicity. ANZ J Surg. 2002;72:344-348.PubMedCrossRefGoogle Scholar
  30. 30.
    Todo Y, Yamamoto R, Minobe S, et al. Risk factors for postoperative lower-extremity lymphedema in endometrial cancer survivors who had treatment including lymphadenectomy. Gynecol Oncol. 2010;119:60-64.PubMedCrossRefGoogle Scholar
  31. 31.
    Homesley HD, Bundy BN, Sedlis A, et al. Radiation therapy versus pelvic node resection for carcinoma of the vulva with positive groin nodes. Obstet Gynecol. 1986;68:733.PubMedGoogle Scholar
  32. 32.
    Ryan M, Stainton MC, Slaytor EK, et al. Aetiology and prevalence of lower limb lymphoedema following treatment for gynaecological cancer. Aust N Z J Obstet Gynaecol. 2003;43(2):148-151.PubMedCrossRefGoogle Scholar
  33. 33.
    Ahamad A, D’Souza W, Salehpour M, et al. Intensity-modulated radiation therapy after hysterectomy: comparison with conventional treatment and sensitivity of the normal-tissue-sparing effect to margin size. Int J Radiat Oncol Biol Phys. 2005;62(4):1117-1124.PubMedCrossRefGoogle Scholar
  34. 34.
    Yang JC, Chang AE, Baker AR, et al. Randomized prospective study of the benefit of adjuvant radiation therapy in the treatment of soft tissue sarcomas of the extremity. J Clin Oncol. 1998;16:197.PubMedGoogle Scholar
  35. 35.
    Stinson SF, Delaney TF, Greenberg J, et al. Acute and long-term effects on limb function of combined modality limb sparing therapy for extremity soft tissue sarcoma. Int J Radiat Oncol Biol Phys. 1991;21:1493.PubMedCrossRefGoogle Scholar
  36. 36.
    O’Sullivan B, Davis AM, Turcotte R, et al. Preoperative versus postoperative radiotherapy in soft-tissue sarcoma of the limbs: a randomized trial. Lancet. 2002;359:2235.PubMedCrossRefGoogle Scholar
  37. 37.
    Davis AM, O’Sullivan B, Turcotte R, et al. Late radiation morbidity following randomization to preoperative versus postoperative radiotherapy in extremity soft tissue sarcoma. Radiother Oncol. 2005;75:48.PubMedCrossRefGoogle Scholar
  38. 38.
    Robinson M, Cassoni A, Harmer C, et al. High dose hyperfractionated radiotherapy in the treatment of extremity soft tissue sarcomas. Radiother Oncol. 1991;22:118-126.PubMedCrossRefGoogle Scholar
  39. 39.
    Alektiar KM, Brennan MF, Healey JH, et al. Impact of intensity-modulated radiation therapy on local control in primary soft-tissue sarcoma of the extremity. J Clin Oncol. 2008;26:3440.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Kathleen C. Horst
    • 1
  1. 1.Department of Radiation OncologyStanford UniversityStanfordUSA

Personalised recommendations