Advertisement

Lymphedema pp 491-497 | Cite as

Genetic Prospects for Lymphedema Management

  • Stanley G. Rockson
Chapter

Abstract

Angiogenic revascularization of the lymphatics is an emerging research area that is likely to be important to the future therapeutics of lymphedema and other ­pathological conditions of the lymphatic vasculature.1,2 The potential to modulate the growth of lymphatic vessels also represents an important aspect of the biological response to the problem of tumor metastasis. Promising pro-lymphangiogenic gene therapy and exogenous molecular treatment methods are under current, active investigation.

Keywords

Hepatocyte Growth Factor Lymphatic Vessel Chylous Ascites Lymphatic Vasculature Emerge Research Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

The author gratefully acknowledges the artistic contributions of Shauna Rockson to the development of this chapter.

References

  1. 1.
    An A, Rockson SG. The potential for molecular treatment strategies in lymphatic disease. Lymphat Res Biol. 2004;2(4):173-181.PubMedCrossRefGoogle Scholar
  2. 2.
    Nakamura K, Rockson SG. Molecular targets for therapeutic lymphangiogenesis in lymphatic dysfunction and disease. Lymphat Res Biol. 2008;6(3-4):181-189.PubMedCrossRefGoogle Scholar
  3. 3.
    Van der Auwera I, Cao Y, Tille JC, et al. First international consensus on the methodology of ­lymphangiogenesis quantification in solid human tumours. Br J Cancer. 2006;95(12):1611-1625.PubMedCrossRefGoogle Scholar
  4. 4.
    Lohela M, Bry M, Tammela T, Alitalo K. VEGFs and receptors involved in angiogenesis versus lymphangiogenesis. Curr Opin Cell Biol. 2009;21(2):154-165.PubMedCrossRefGoogle Scholar
  5. 5.
    Lohela M, Saaristo A, Veikkola T, Alitalo K. Lymphangiogenic growth factors, receptors and therapies. Thromb Haemost. 2003;90(2):167-184.PubMedGoogle Scholar
  6. 6.
    Joukov V, Pajusola K, Kaipainen A, et al. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J. 1996;15(7):1751.PubMedGoogle Scholar
  7. 7.
    Karkkainen MJ, Haiko P, Sainio K, et al. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol. 2004;5(1):74-80.PubMedCrossRefGoogle Scholar
  8. 8.
    Wirzenius M, Tammela T, Uutela M, et al. Distinct vascular endothelial growth factor signals for lymphatic vessel enlargement and sprouting. J Exp Med. 2007;204(6):1431-1440.PubMedCrossRefGoogle Scholar
  9. 9.
    Cueni LN, Detmar M. New insights into the molecular control of the lymphatic vascular system and its role in disease. J Invest Dermatol. 2006;126(10):2167-2177.PubMedCrossRefGoogle Scholar
  10. 10.
    Tammela T, Saaristo A, Lohela M, et al. Angiopoietin-1 promotes lymphatic sprouting and hyperplasia. Blood. 2005;105(12):4642-4648.PubMedCrossRefGoogle Scholar
  11. 11.
    Morisada T, Oike Y, Yamada Y, et al. Angiopoietin-1 promotes LYVE-1-positive lymphatic vessel formation. Blood. 2005;105(12):4649-4656.PubMedCrossRefGoogle Scholar
  12. 12.
    Kim KE, Cho CH, Kim HZ, Baluk P, McDonald DM, Koh GY. In vivo actions of angiopoietins on quiescent and remodeling blood and lymphatic vessels in mouse airways and skin. Arterioscler Thromb Vasc Biol. 2007;27(3):564-570.PubMedCrossRefGoogle Scholar
  13. 13.
    Oliver G. Lymphatic vasculature development. Nat Rev Immunol. 2004;4(1):35-45.PubMedCrossRefGoogle Scholar
  14. 14.
    Kunstfeld R, Hirakawa S, Hong YK, et al. Induction of cutaneous delayed-type hypersensitivity reactions in VEGF-A transgenic mice results in chronic skin inflammation associated with persistent lymphatic hyperplasia. Blood. 2004;104(4):1048-1057.PubMedCrossRefGoogle Scholar
  15. 15.
    Baluk P, Tammela T, Ator E, et al. Pathogenesis of persistent lymphatic vessel hyperplasia in chronic airway inflammation. J Clin Invest. 2005;115(2):247-257.PubMedGoogle Scholar
  16. 16.
    Cueni LN, Detmar M. The lymphatic system in health and disease. Lymphat Res Biol. 2008;6(3-4):109-122.PubMedCrossRefGoogle Scholar
  17. 17.
    Skobe M, Hawighorst T, Jackson DG, et al. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med. 2001;7(2):192-198.PubMedCrossRefGoogle Scholar
  18. 18.
    Mandriota SJ, Jussila L, Jeltsch M, et al. Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO J. 2001;20(4):672-682.PubMedCrossRefGoogle Scholar
  19. 19.
    Stacker SA, Caesar C, Baldwin ME, et al. VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med. 2001;7(2):186-191.PubMedCrossRefGoogle Scholar
  20. 20.
    Goldman J, Conley KA, Raehl A, et al. Regulation of lymphatic capillary regeneration by interstitial flow in skin. Am J Physiol Heart Circ Physiol. 2007;292(5):H2176-H2183.PubMedCrossRefGoogle Scholar
  21. 21.
    Stacker SA, Achen MG, Jussila L, Baldwin ME, Alitalo K. Lymphangiogenesis and cancer metastasis. Nat Rev Cancer. 2002;2(8):573-583.PubMedCrossRefGoogle Scholar
  22. 22.
    Kopfstein L, Veikkola T, Djonov VG, et al. Distinct roles of vascular endothelial growth factor-D in lymphangiogenesis and metastasis. Am J Pathol. 2007;170(4):1348-1361.PubMedCrossRefGoogle Scholar
  23. 23.
    He Y, Kozaki K, Karpanen T, et al. Suppression of tumor lymphangiogenesis and lymph node metastasis by blocking vascular endothelial growth factor receptor 3 signaling. J Natl Cancer Inst. 2002;94(11):819-825.PubMedGoogle Scholar
  24. 24.
    Szuba A, Skobe M, Karkkainen M, et al. Therapeutic lymphangiogenesis with human recombinant VEGF-C. FASEB J. 2002;16:U114-U130.Google Scholar
  25. 25.
    Yoon YS, Murayama T, Gravereaux E, et al. VEGF-C gene therapy augments postnatal lymphangiogenesis and ameliorates secondary lymphedema. J Clin Invest. 2003;111(5):717-725.PubMedGoogle Scholar
  26. 26.
    Saaristo A, Tammela T, Timonen J, et al. Vascular endothelial growth factor-C gene therapy restores lymphatic flow across incision wounds. FASEB J. 2004;18(14):1707-1709.PubMedGoogle Scholar
  27. 27.
    Tammela T, Saaristo A, Holopainen T, et al. Therapeutic differentiation and maturation of lymphatic vessels after lymph node dissection and transplantation. Nat Med. 2007;13(12):1458-1466.PubMedCrossRefGoogle Scholar
  28. 28.
    Meige H. Dystophie oedematoeuse hereditaire. Presse Méd. 1898;6:341-343.Google Scholar
  29. 29.
    Rezaie T, Ghoroghchian R, Bell R, et al. Primary non-syndromic lymphoedema (Meige disease) is not caused by mutations in FOXC2. Eur J Hum Genet. 2008;16(3):300-304.PubMedCrossRefGoogle Scholar
  30. 30.
    Fang J, Dagenais SL, Erickson RP, et al. Mutations in FOXC2 (MFH-1), a forkhead family transcription factor, are responsible for the hereditary lymphedema-distichiasis syndrome. Am J Hum Genet. 2000;67(6):1382-1388.PubMedCrossRefGoogle Scholar
  31. 31.
    Brice G, Mansour S, Bell R, et al. Analysis of the phenotypic abnormalities in lymphoedema-distichiasis syndrome in 74 patients with FOXC2 mutations or linkage to 16q24. J Med Genet. 2002;39(7):478-483.PubMedCrossRefGoogle Scholar
  32. 32.
    Kriederman BM, Myloyde TL, Witte MH, et al. FOXC2 haploinsufficient mice are a model for human autosomal dominant lymphedema-distichiasis syndrome. Hum Mol Genet. 2003;12(10):1179-1185.PubMedCrossRefGoogle Scholar
  33. 33.
    Petrova TV, Karpanen T, Norrmen C, et al. Defective valves and abnormal mural cell recruitment underlie lymphatic vascular failure in lymphedema distichiasis. Nat Med. 2004;10(9):974-981.PubMedCrossRefGoogle Scholar
  34. 34.
    Mellor RH, Brice G, Stanton AW, et al. Mutations in FOXC2 are strongly associated with primary valve failure in veins of the lower limb. Circulation. 2007;115(14):1912-1920.PubMedCrossRefGoogle Scholar
  35. 35.
    Irrthum A, Devriendt K, Chitayat D, et al. Mutations in the transcription factor gene SOX18 underlie recessive and dominant forms of hypotrichosis-lymphedema-telangiectasia. Am J Hum Genet. 2003;72(6):1470-1478.PubMedCrossRefGoogle Scholar
  36. 36.
    Francois M, Caprini A, Hosking B, et al. Sox18 induces development of the lymphatic vasculature in mice. Nature. 2008;456(7222):643-647.PubMedCrossRefGoogle Scholar
  37. 37.
    Schacht V, Ramirez MI, Hong YK, et al. T1alpha/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema. EMBO J. 2003;22(14):3546-3556.PubMedCrossRefGoogle Scholar
  38. 38.
    Ferrell RE, Levinson KL, Esman JH, et al. Hereditary lymphedema: evidence for linkage and genetic heterogeneity. Hum Mol Genet. 1998;7(13):2073-2078.PubMedCrossRefGoogle Scholar
  39. 39.
    Karkkainen MJ, Ferrell RE, Lawrence EC, et al. Missense mutations interfere with VEGFR-3 signalling in primary lymphoedema. Nat Genet. 2000;25(2):153-159.PubMedCrossRefGoogle Scholar
  40. 40.
    Karkkainen MJ, Saaristo A, Jussila L, et al. A model for gene therapy of human hereditary lymphedema. Proc Natl Acad Sci USA. 2001;98(22):12677-12682.PubMedCrossRefGoogle Scholar
  41. 41.
    Rockson S. Preclinical models of lymphatic disease: the potential for growth factor and gene therapy. Ann NY Acad Sci. 2002;979:64-75.PubMedCrossRefGoogle Scholar
  42. 42.
    Shin WS, Rockson SG. Animal models for the molecular and mechanistic study of lymphatic biology and disease. Ann NY Acad Sci. 2008;1131:50-74.PubMedCrossRefGoogle Scholar
  43. 43.
    Nakamura K, Rockson SG. Biomarkers of lymphatic function and disease: state of the art and future directions. Mol Diagn Ther. 2007;11(4):227-238.PubMedGoogle Scholar
  44. 44.
    Cheung L, Han J, Beilhack A, et al. An experimental model for the study of lymphedema and its response to therapeutic lymphangiogenesis. BioDrugs. 2006;20(6):363-370.PubMedCrossRefGoogle Scholar
  45. 45.
    Saito Y, Nakagami H, Morishita R, et al. Transfection of human hepatocyte growth factor gene ameliorates secondary lymphedema via promotion of lymphangiogenesis. Circulation. 2006;114(11):1177-1184.PubMedCrossRefGoogle Scholar
  46. 46.
    Jin DP, An A, Liu J, Nakamura K, Rockson SG. Therapeutic responses to exogenous VEGF-C administration in experimental lymphedema: immunohistochemical and molecular characterization. Lymphat Res Biol. 2009;7(1):47-57.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Stanley G. Rockson
    • 1
  1. 1.Division of Cardiovascular MedicineStanford University School of Medicine, Falk Cardiovascular Research CenterStanfordUSA

Personalised recommendations