Modelling Superstructure for Conceptual Design of Syngas Generation and Treatment

  • Aarón D. Bojarski
  • Mar Pérez-Fortes
  • José María Nougués
  • Luis Puigjaner
Part of the Green Energy and Technology book series (GREEN)


In this chapter a description of how the process synthesis problem can be casted as a superstructure optimisation problem is done. The first section draws on how the superstructure can be built, while the second section depicts the different techniques that can be used to reduce the computational time required to run a superstructure optimisation. Section 3 describes the different integration and control considerations embedded in a possible superstructure for analysing syngas generation and treatment. This last section also shows the results of different scenarios of this superstructure model.


Combine Cycle Heat Recovery Steam Generator Heat Exchanger Network Syngas Production Waste Heat Boiler 



Artificial neural network


Air separation unit


Combined cycle


Cold gas efficiency


Continuous stirred tank reactor


Degree of freedom


Equation oriented


Equivalence ratio


Genetic algorithm


Gas turbine


Heat recovery steam generator


High pressure


Integrated gasification combined cycle


Intermediate pressure


Key performance indicators


Lower heating value


Linear programming


Low pressure


Mixed-integer linear programming


Mixed-integer non-linear programming


Multi-objective optimisation


Mean square error


Non-linear programming


Objective function


Plug flow reactor


Pressure ratio


Pressure swing adsorption


Pressurised entrained flow


Response surface methodology


Sensitivity analysis


Sequential modular


Sequential quadratic programming


Steam turbine


Turbine inlet temperature


Turbine outlet temperature




Waste heat boiler


Clean gas


Raw gas


  1. 1.
    Cameron I (2005) Modelling across the process life cycle: a risk management perspective. Eur Symp Comput Aided Process Eng 15:3–19Google Scholar
  2. 2.
    ISO15288 (2008) Systems and software engineering—system life cycle processes. Technical report ISO, Genève, SwitzerlandGoogle Scholar
  3. 3.
    ISO14040 (1997) Environmental management—life cycle assessment—principles and framework. Technical report ISO. Genève, SwitzerlandGoogle Scholar
  4. 4.
    Cameron IT, Newell RB (2006) Modeling in the process life cycle. In: Puigjaner L, Heyen G (eds) Computer aided process and product engineering, Sect. 4.2. Wiley, New York, pp 667–693CrossRefGoogle Scholar
  5. 5.
    Yang Y, Shi L (2000) Integrating environmental impact minimization into conceptual chemical process design: a process systems engineering review. Comput Chem Eng 24:1409–1419CrossRefGoogle Scholar
  6. 6.
    Rebitzer G, Ekvall T, Frischknecht R, Hunkeler D, Norris G, Rydberg G, Schmidt W, Suh S, Weidema B, Pennington D (2004) Life cycle assessment Part 1: framework, goal and scope definition, inventory analysis, and applications. Environ Int 30:701–720CrossRefGoogle Scholar
  7. 7.
    Douglas JA (1985) Hierarchical decision procedure for process synthesis. AlChE J 31:353–362CrossRefGoogle Scholar
  8. 8.
    Biegler L, Grossmann I, Westerberg A (1997) Systematic methods of chemical process design. Prentice-Hall, Englewood CliffsGoogle Scholar
  9. 9.
    Yeomans H, Grossmann IE (1999) A systematic modeling framework of superstructure optimization in process synthesis. Comput Chem Eng 23:709–731CrossRefGoogle Scholar
  10. 10.
    Metz B, Davidson O, Coninck H, Loos M, Meyer L (2005) Special report on carbon dioxide capture and storage, Chap. 3. IPCC, SwitzerlandGoogle Scholar
  11. 11.
    Diwekar U (2005) Green process design, industrial ecology, and sustainability: a systems perspective. Resour Conserv Recy 44:215–235CrossRefGoogle Scholar
  12. 12.
    Diwekar U, Small M (2002) Process analysis approach to industrial ecology. In: Ayres RU, Ayres LW (eds) A handbook of industrial ecology. Edward Elgar, Cheltenham, UK, pp 114–137Google Scholar
  13. 13.
    Nocedal J, Wright S (2006) Numerical optimization, 2nd edn. Springer, BerlinMATHGoogle Scholar
  14. 14.
    Steuer R (1986) Multiple criteria optimization: theory computation and application. Wiley series in probability and mathematical statistics–applied, 1st edn. Wiley, New YorkGoogle Scholar
  15. 15.
    Statnikov R, Matusov J (1995) Multicriteria optimization and engineering, 1st edn. Chapman and Hall, New YorkCrossRefGoogle Scholar
  16. 16.
    Griva I, Nash G, Sofer A (2009) Linear and nonlinear optimization, 2nd edn. Society for Industrial and Applied Mathematics (SIAM), PhiladelphiaMATHCrossRefGoogle Scholar
  17. 17.
    Caballero J, Odjo A, Grossmann I (2007) Flowsheet optimization with complex cost and size functions using process simulators. AIChE J 53:2351–2366CrossRefGoogle Scholar
  18. 18.
    Biegler L, Cuthrell J (1985) Improved infeasible path optimization for sequential modular simulators, Part II: the optimization algorithm. Comput Chem Eng 9:257–267CrossRefGoogle Scholar
  19. 19.
    Lang Y-D, Biegler L (1987) A unified algorithm for flowsheet optimization. Comput Chem Eng 11:143–158CrossRefGoogle Scholar
  20. 20.
    AspenTech INC (2005) Aspen plus system reference. Aspen Tech, CambrigeGoogle Scholar
  21. 21.
    AspenTech INC (2005) Aspen HYSYS system reference. Aspen Tech, CambrigeGoogle Scholar
  22. 22.
    Alexander B, Barton G, Petrie J, Romagnoli J (2000) Process synthesis and optimisation tools for environmental design: methodology and structure. Comput Chem Eng 24:1195–1200CrossRefGoogle Scholar
  23. 23.
    Chen H, Rogers T, Barna B, Shonnard D (2003) Automating hierarchical environmentally-conscious design using integrated software: VOC recovery case study. Environ Prog 22:147–160CrossRefGoogle Scholar
  24. 24.
    Caballero J, Milan-Yanez D, Grossmann I (2005) Rigorous design of distillation columns. Integration of disjunctive programming and process simulators. Ind Eng Chem Res 44(200):6760–6775CrossRefGoogle Scholar
  25. 25.
    Diwekar U, Grossmann I, Rubin E (1992) An MINLP process synthesizer for a sequential modular simulator. Ind Eng Chem Res 31:313–322CrossRefGoogle Scholar
  26. 26.
    Chaudhuri P, Diwekar U (1997) Synthesis under uncertainty with simulators. Comput Chem Eng 21:733–738CrossRefGoogle Scholar
  27. 27.
    Fu Y, Diwekar U, Young D, Cabezas H (2001) Designing processes for environmental problems. In: Sikdar SK, El-Halwagi M (eds) Process design tools for the environment, vol 1, Chap. 12. Taylor & Francis, New York, pp 295–317Google Scholar
  28. 28.
    Fang K, Li R, Sudjianto A (2006) Design and modeling for computer experiments, 1st edn. Chapman & Hall/CRC, Taylor & Francis, Boca Raton, FLMATHGoogle Scholar
  29. 29.
    Chen J, Frey C (2004) Optimization under variability and uncertainty: a case study for NOx emissions control for a gasification system. Environ Sci Technol 38:6741–6747CrossRefGoogle Scholar
  30. 30.
    Almeida-Bezerra M, Santelli R, Padua-Oliveira E, Escaleira L (2008) Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76:965–977CrossRefGoogle Scholar
  31. 31.
    Kasabov N (1998) Foundations of neural networks, fuzzy systems, and knowledge engineering, 2nd edn, a Bradford book. MIT Press, Cambridge, MassachusettsGoogle Scholar
  32. 32.
    Pérez-Fortes M, Bojarski AD, Velo E, Nougués JM, Puigjaner L (2009) Conceptual model and evaluation of generated power and emissions in an IGCC plant. Energy 34:1721–1732CrossRefGoogle Scholar
  33. 33.
    Pérez-Fortes M, Bojarski AD, Velo E, Puigjaner L (2010) IGCC power plants: Conceptual design and techno-economic optimization. In: Harris AM (ed) Clean energy: resources, production and developments. NOVA, Hauppauge, NYGoogle Scholar
  34. 34.
    Giampaolo T (2006) The gas turbine handbook, principles and practice, 3rd edn. Fairmont Press, Lilburn, GeorgiaGoogle Scholar
  35. 35.
    Zhu Y (2004) Evaluation of gas turbine and gasifier-based power generation system. PhD thesis, Graduate Faculty, North Carolina State UniversityGoogle Scholar
  36. 36.
    Ongiro AO, Ugursal VI, Altaweel AM, Blamire DK (1995) Simulation of combined-cycle power-plants using the Aspen Plus shell. Heat Recovery Syst CHP 15:105–113CrossRefGoogle Scholar
  37. 37.
    Coca MT (2003) Tecnología de gasificación integrada en ciclo combinado: GICC. Aplicación real en España: Elcogas. Puertollano. Technical report, ENERCLUBGoogle Scholar
  38. 38.
    Highman C, van der Burght M (2003) Gasification. Elsevier Science, AmsterdamGoogle Scholar
  39. 39.
    Wells G, Rose L (1986) The art of chemical process design, Vol 1–2 of computer-aided chemical engineering. Elsevier, AmsterdamGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Aarón D. Bojarski
    • 1
  • Mar Pérez-Fortes
    • 1
  • José María Nougués
    • 1
  • Luis Puigjaner
    • 1
  1. 1.ETSEIBUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations