Modelling Syngas Generation

  • Mar Pérez-Fortes
  • Aarón D. Bojarski
Part of the Green Energy and Technology book series (GREEN)


Syngas generation refers to the production of a synthetic or synthesis gas that is mainly composed of CO and H2, in different proportions according to the generation process used and the raw material composition. Gasification is the referred technique to produce syngas. It can be used for different purposes, such as power and/or heat generation or for chemicals and fuels production. This chapter describes, we comment the generalities of syngas and its main characteristics and properties, also discuss its possible sources and focus on biomass waste and its co-gasification with coal and petcoke. Then, gasification modelling most common approaches are mentioned. A thermochemical equilibrium model is presented here as the model used for gasification plant conceptual design. Through sensitivity analysis technique, the effects of the reactor temperature and pressure are seen in syngas composition. This chapter enumerates the major hypothesis assumed in this syngas generation step, which must be inevitably applied in modelling and optimizing the entire gasification plant.


Equivalence Ratio High Heating Value Biomass Waste Biomass Gasification Lower Heating Value 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Air separation unit


Combined cycle


Cold gas efficiency


Equation of state


Equivalence ratio


Fischer–Tropsch process


Gas turbine


Higher heating value


High pressure


Heat recovery steam generator


Integrated gasification combined cycle


Intermediate pressure


Lower heating value


Pressure of gasification


Pressurized entrained flow gasifier


Particle size distribution


Sensitivity analysis




Steam turbine


Temperature of gasification


Waste heat boiler


  1. 1.
    Wender I (1996) Reactions of synthesis gas. Fuel Process Technol 48:189–297CrossRefGoogle Scholar
  2. 2.
    Highman C, van der Burght M (2003) Gasification. Elsevier Science, New YorkGoogle Scholar
  3. 3.
    NETL (2007) Gasification world database 2007. Current industry status: robust growth forecast. Technical report, National Energy Technology Laboratory, Pittsburgh, PAGoogle Scholar
  4. 4.
    Reed TB, Das A (1988) Handbook of biomass downdraft gasifier engine systems. Solar Energy Research Institute (SERI), US Department of Energy, Colorado, US. Residence time 199XGoogle Scholar
  5. 5.
    Sharma AK (2009) Experimental study on 75 kWth downdraft (biomass) gasifier system. Renew Energy 34:1726–1733CrossRefGoogle Scholar
  6. 6.
    Coca MT (2003) Tecnología de gasificación integrada en ciclo combinado: GICC. Aplicación real en España: ELCOGAS. Puertollano. Technical report, ENERCLUBGoogle Scholar
  7. 7.
    Zainal ZA, Rifau A, Quadir GA, Seetharamu KN (2002) Experimental investigation of a downdraft biomass gasifier. Biomass Bioenergy 23:283–289CrossRefGoogle Scholar
  8. 8.
    Bridgwater AV (2003) Renewable fuels and chemicals by thermal processing of biomass. Chem Eng J 91:87–102CrossRefGoogle Scholar
  9. 9.
    Milne TA, Evans RJ, Abatzoglou N (1998) Biomass gasifier “tars’’: their nature, formation, and conversion. NREL/TP-570-25357, Technical report. EEUU, Springfield, VAGoogle Scholar
  10. 10.
    Van de Kamp W, Wild P, Zielke U, Suomalainen M, Knoef H, Good J, Liliedahl T, Unger C, Whitehouse M, Neeft J, van de Hoek H, Kiel J (2005) Tar measurement standard for sampling and analysis of tars and particles in biomass gasification product gas. ECN Biomass, Technical reportGoogle Scholar
  11. 11.
    Sutton D, Kelleher B, Ross JRH (2001) Review of literature on catalysts for biomass gasification. Fuel Process Technol 73:155–173CrossRefGoogle Scholar
  12. 12.
    Mastellone ML, Zaccariello L, Arena U (2010) Co-gasification of coal, plastic waste and wood in a bubbling fluidized bed reactor. Fuel 89:2991–3000CrossRefGoogle Scholar
  13. 13.
    Hernández JJ, Aranda-Almansa G, Serrano C (2010) Co-gasification of biomass wastes and coal coke blends in an entrained flow gasifier: an experimental study. Energy Fuels 24:2479–2488CrossRefGoogle Scholar
  14. 14.
    Fermoso J, Arias B, Plaza MG, Pevida C, Rubiera F, Pis JJ, García-Peña F, Casero P (2009) High-pressure co-gasification of coal with biomass and petroleum coke. Fuel Process Technol 90:926–932CrossRefGoogle Scholar
  15. 15.
    Wen CY, Chaung TZ (1973) Entrainment coal gasification modelling. Industrial Eng Chem Process Des Dev 18:684–695CrossRefGoogle Scholar
  16. 16.
    Gas Production/Gas Treating (2003) Ullmann’s encyclopedia of industrial chem. Online editionGoogle Scholar
  17. 17.
    Ruggiero M, Manfrida G (1999) An equilibrium model for biomass gasification processes. Renew Energy 16:1106–1109CrossRefGoogle Scholar
  18. 18.
    Usón S, Valero A, Correas L, Martínez A (2004) Co-gasification of coal and biomass in an IGCC power palnt: gasifier modeling. Int J Thermodynamics 7:165–174Google Scholar
  19. 19.
    Gautam G, Adhikari S, Bhavnani S (2010) Estimation of biomass synthesis gas composition using equilibrium models. Energy Fuels 24:2692–2698CrossRefGoogle Scholar
  20. 20.
    Di Blasi C (2000) Dynamic behaviour of stratified downdraft gasifiers. Chem Eng Sci 55:2931–2944CrossRefGoogle Scholar
  21. 21.
    Jand N, Foscolo PU (2005) Decomposition of wood particles in fluidized beds. Industrial Eng Chem Res 44:5079–5089CrossRefGoogle Scholar
  22. 22.
    Govind R, Shah J (1984) Modeling and simulation of an entrained flow coal gasifier. AIChe J 30:79–92CrossRefGoogle Scholar
  23. 23.
    Pérez-Fortes M, Bojarski AD, Velo E, Nougués JM, Puigjaner L (2009) Conceptual model and evaluation of generated power and emissions in an IGCC plant. Energy 34:1721–1732CrossRefGoogle Scholar
  24. 24.
    Balzioc S, Hawksley PGW (1970) Kinetics of thermal decomposition of pulverized coal particles. Industrial Eng Chem Process Des Dev 9:521–530Google Scholar
  25. 25.
    Loison R, Chauvin R (1964) Fast pyrolysis of coal pyrolyse rapide du charbon. Chimie Industrie 91:269–275Google Scholar
  26. 26.
    García-Labiano F, Adánez J, Hampartsoumian E, Williams A (1996) Sulfur release during the devolatilization of large coal particles. Fuel 75:585–590CrossRefGoogle Scholar
  27. 27.
    Kambara S, Takarada T, Toyoshimab M, Katob K (1993) Relation between functional forms olf coal nitrogen and formation of NOx precursors during rapid pyrolysis. Energy fuels 7:1013–1020CrossRefGoogle Scholar
  28. 28.
    Lucien B, Favrat D (2010) Thermodynamics and energy systems analysis; From energy to exergy., Engineering Sciences, Mechanical EngineeringEPFL Press, Lausanne, SwitzerlandGoogle Scholar
  29. 29.
    Kunzing GE (1981) Gas–solid transport. McGraw-Hill, New YorkGoogle Scholar
  30. 30.
    Perry R, Green D (eds) (1997) Size reduction and size enlargement. In: Perry’s chemical engineers’ handbook. McGraw-Hill, New YorkGoogle Scholar
  31. 31.
    AspenTech Incorporation (2010) Aspen Plus user’s guide. OnlineGoogle Scholar
  32. 32.
    Dogru M, Howarth CR, Akay G et al (2002) Gasification of hazelnut shells in a drowndraft gasifier. Energy 27:415–427CrossRefGoogle Scholar
  33. 33.
    His C-L, Wang T-Y, Tsai C-H, Chang C-Y, Liu C-H, Chang Y-C, Kuo JT (2008) Characteristics of an air-blown fixed-bed downdraft biomass gasifier. Energy Fuels 22:4196–4205CrossRefGoogle Scholar
  34. 34.
    Jayah TH, Aye L, Fuller RJ, Stewart DF (2003) Computer simulation of a downdraft wood gasifier for tea drying. Biomass Bioenergy 25:459–469CrossRefGoogle Scholar
  35. 35.
    Loeser M, Redfern MA (2009) Modelling and simulation of a novel micro-scale combined feedstock biomass generation plant for grid-independent power supply. Int J Energy Res 34(4):303–320. doi: DOI:10.1002/er.1556 CrossRefGoogle Scholar
  36. 36.
    Melgar A, Pérez JF, Laget H, Horillo A (2007) Thermochemical equilibrium modelling of a gasifying process. Energy Convers Manag 48:59–67CrossRefGoogle Scholar
  37. 37.
    Giltrap DL, McKibbin R, Barnes GRG (2003) A steady state model of gas-char reactions in a downdraft biomass gasifier. Sol Energy 74:85–91CrossRefGoogle Scholar
  38. 38.
    Altafini CR, Wander PR, Barreto RM (2003) Prediction of the working parameters of a wood waste gasifier through an equilibrium model. Energy Convers Manag 44:2763–2777CrossRefGoogle Scholar
  39. 39.
    Wang Y, Kinoshita CM (1993) Kinetic model of biomass gasification. Sol Energy 51:19–25CrossRefGoogle Scholar
  40. 40.
    Nikoo MB, Mahinpey N (2008) Simulation of biomass gasification in fluidized bed reactor using Aspen plus. Biomass Bioenergy 32:1245–1254CrossRefGoogle Scholar
  41. 41.
    Emun F, Gadalla M, Majozi T, Boer D (2009) Integrated gasification combined cycle (IGCC) process simulation and optimization. Comput Chem Eng 34:331–338CrossRefGoogle Scholar
  42. 42.
    Robinson PJ, Luyben WL (2008) Simple dynamic gasifier model that runs in Aspen dynamics. Industrial Eng Chem Res 47:7784–7792CrossRefGoogle Scholar
  43. 43.
    Nathen SV, Kirkpatrick RD, Young BR (2008) Gasification of New Zealand coals: a comparative simulation study. Energy Fuels 22:2687–2692CrossRefGoogle Scholar
  44. 44.
    Frey CH, Akunuri N (2001) Probabilistic modeling and evaluation of the performance, emissions, and cost of texaco gasifier-based integrated gasification combined cycle systems using ASPEN. Technical report. Prepared by North Carolina State University for Carnegie Mellon University and US Department of Energy, Pittsburgh. Accessed date/month/year
  45. 45.
    ECN-Biomass (2010) Phyllis, database for biomass and waste. Energy research Centre of the Netherlands (ECN). Accessed date/month/year
  46. 46.
    Sharma SD, Dolan M, Park D, Morpeth L, Ilyushechkin A, McLennan K, Harris DJ, Thambimuthu KV (2008) A critical review of syngas cleaning technologies fundamental limitations and practical problems. Powder Technol 180:115–121CrossRefGoogle Scholar
  47. 47.
    Wang L, Weller CL, Jones DD, Hanna MA (2008) Contemporary issues in thermal gasification of biomass and its application to electricity and fuel production. Biomass Bioenergy 32:573–581CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.ETSEIBUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations