Skip to main content

Industrial Data Collection

  • Chapter
  • First Online:
Syngas from Waste

Part of the book series: Green Energy and Technology ((GREEN))

  • 1556 Accesses

Abstract

In this chapter, a general description of data-mining techniques is done in the context of IGCC operation. The different control philosophies applicable to IGCC operation are discussed together with different examples of data reconciliation based on process simulation. The problem of process monitorisation, as an example of data-mining application, is extensively discussed and an approach based on PCA is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ASU:

Air separation unit

CC:

Combined cycle

CPV:

Cumulative percent variance

DCS:

Distributed control system

DR:

Data reconciliation

ICA:

Independent component analysis

MSPC:

Multivariate statistical process control

NOC:

Normal operating condition

OTC:

Outlet temperature corrected

PC:

Principal component

PCA:

Principal components analysis

PIMS:

Plant information system

PLS:

Partial least squares

SPE:

Squared prediction error

References

  1. Tona-Vásquez RV (2006) Estrategias de análisis y exploración de datos como soporte a la operación y supervisión de procesos químicos (in Spanish). PhD thesis, Universitat Politecnica de Catalunya, Barcelona, Spain

    Google Scholar 

  2. Kuehn D, Davidson H (1961) Computer control at American oil I: mathematics of control. Chem Eng Prog 57(6):44–51

    Google Scholar 

  3. Knepper JC, Gorman JW (1980) Statistical analysis of constrained data sets. AIChE J 26:260–264

    Article  MathSciNet  Google Scholar 

  4. Tjoa I, Biegler L (1992) Reduced successive quadratic programming strategy for errors-invariables estimation. Comput Chem Eng 16(6):523–533

    Article  Google Scholar 

  5. Romagnoli J, Sanchez M (1999) Data processing and reconciliation for chemical processes operation. Academic Press, New York

    Google Scholar 

  6. Alvarez-Medina CR (2010) Integración de reconciliación de datos y monitoreo en procesos de polimerización (in Spanish). PhD thesis, Universidad Nacional del Sur, UNS, Bahia Blanca, Argentina

    Google Scholar 

  7. Crowe C, García-Campos Y, Hrymak A (1983) Reconciliation of process flow rates by matrix projection part I: linear case. AIChE J 29:881–888

    Article  Google Scholar 

  8. Sanchez M, Romagnoli J (1996) Use of orthogonal transformations in data classification-reconciliation. Comput Chem Eng 20(5):483–493

    Article  Google Scholar 

  9. Zagoruiko AN, Matros YS (2002) Mathematical modelling of Claus reactors undergoing sulfur condensation and evaporation. Chem Eng J 87(1):73–88

    Article  Google Scholar 

  10. Perez-Fortes MM, Bojarski AD, Velo E, Nougués JM, Puigjaner L (2009) Conceptual model and evaluation of generated power and emissions in an IGCC plant. Energy 34:1721–1732

    Article  Google Scholar 

  11. Sequeira SE (2003) Real time evolution (RTE) for on-line optimisation of continuous and semi-continuous chemical processes. PhD thesis, Universitat Politecnica de Catalunya, Barcelona, Spain

    Google Scholar 

  12. Han J, Kamber M (2006) Data mining: concepts and techniques, 2nd edn. Morgan Kaufmann, Massachusets, USA

    Google Scholar 

  13. Jackson JE (1991) A user’s guide to principal components. John Wiley & Sons, New York, USA

    Book  MATH  Google Scholar 

  14. Wold H (1966) Estimation of principal components and related models by iterative least squares. In: Krishnaiah PR (ed) Multivariate analysis. Academic Press, New York, pp 391–420

    Google Scholar 

  15. Valle S, Li W, Qin SJ (1999) Selection of the number of principal components: the variance of the reconstruction error criterion with a comparison to other methods. Ind Eng Chem Res 38(11):4389–4401

    Article  Google Scholar 

  16. Hotelling H (1931) The generalization of Student’s ratio. Ann Math Stat 2:360–378

    Article  MATH  Google Scholar 

  17. Nomikos P, MacGregor JF (1995) Multivariate SPC charts for monitoring batch processes. Technometrics 37(1):41–59

    Article  MATH  Google Scholar 

  18. Westerhuis JA, Gurden SP, Smilde AK (2000) Generalized contribution plots in multivariate statistical process monitoring. Chemom Intell Lab Syst 51:95–114

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aarón D. Bojarski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Bojarski, A.D., Medina, C.R.A., Pérez–Fortes, M., Coca, P. (2011). Industrial Data Collection. In: Puigjaner, L. (eds) Syngas from Waste. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-0-85729-540-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-540-8_13

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-539-2

  • Online ISBN: 978-0-85729-540-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics