Advertisement

Fermat’s Last Theorem

  • Władysław Narkiewicz
Part of the Springer Monographs in Mathematics book series (SMM)

Abstract

The last chapter brings a short survey on the work on Fermat’s Last Theorem, culminating in its proof.

Keywords

Number Theory General Equation Classical Approach Short Survey 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 18.
    Adleman, L.M., Heath-Brown, D.R.: The first case of Fermat’s last theorem. Invent. Math. 79, 409–416 (1985) MathSciNetMATHGoogle Scholar
  2. 101.
    Ankeny, N.C.: The insolubility of sets of Diophantine equations in the rational numbers. Proc. Natl. Acad. Sci. USA 38, 880–884 (1952) MathSciNetMATHGoogle Scholar
  3. 103.
    Ankeny, N.C., Chowla, S.: The class number of the cyclotomic field. Proc. Natl. Acad. Sci. USA 35, 529–532 (1949) MathSciNetMATHGoogle Scholar
  4. 104.
    Ankeny, N.C., Chowla, S.: The class number of the cyclotomic field. Can. J. Math. 3, 486–491 (1951) MathSciNetMATHGoogle Scholar
  5. 149.
    Ash, A.: Galois representations attached to mod p cohomology of GL(n,Z). Duke Math. J. 65, 235–255 (1992) MathSciNetMATHGoogle Scholar
  6. 150.
    Ash, A., Doud, D., Pollack, D.: Galois representations with conjectural connections to arithmetic cohomology. Duke Math. J. 112, 521–579 (2002) MathSciNetMATHGoogle Scholar
  7. 151.
    Ash, A., Sinnott, W.: An analogue of Serre’s conjecture for Galois representations and Hecke eigenclasses in the mod p cohomology of GL(n,Z). Duke Math. J. 105, 1–24 (2000) MathSciNetMATHGoogle Scholar
  8. 201.
    Bachmann, P.: Über den Rest von \({2^{p-1}-1\over p}\) (mod. p). J. Reine Angew. Math. 142, 41–50 (1913) Google Scholar
  9. 329.
    Barner, K.: Paul Wolfskehl and the Wolfskehl prize. Not. Am. Math. Soc. 44, 1294–1303 (1997) MathSciNetMATHGoogle Scholar
  10. 382.
    Beeger, N.G.W.H.: On a new case of the congruence 2p−1≡1 (mod p 2). Messenger Math. 51, 149–150 (1921/1922) Google Scholar
  11. 383.
    Beeger, N.G.W.H.: On the congruence 2p−1≡1 (mod p 2) and Fermat’s last theorem. Nieuw Arch. Wiskd. 20, 51–54 (1939) MathSciNetMATHGoogle Scholar
  12. 397.
    Bell, E.T.: Analogies between the u n,v n of Lucas and elliptic functions. Bull. Am. Math. Soc. 29, 401–406 (1923) MATHGoogle Scholar
  13. 414.
    Bennett, M.A.: The equation x 2n+y 2n=z 5. J. Théor. Nr. Bordx. 18, 315–321 (2006) MATHGoogle Scholar
  14. 419.
    Bennett, M.A., Skinner, C.M.: Ternary Diophantine equations via Galois representations and modular forms. Can. J. Math. 56, 23–54 (2004) MathSciNetMATHGoogle Scholar
  15. 438.
    Bergmann, G.: Über Eulers Beweis des grossen Fermatschen Satzes für den Exponenten 3. Math. Ann. 164, 159–175 (1966) MathSciNetMATHGoogle Scholar
  16. 465.
    Bernstein, F.: Ueber den zweiten Fall des letzten Fermatschen Lehrsatzes. Nachr. Ges. Wiss. Göttingen, 1910, 507–516 Google Scholar
  17. 474.
    Bertrand, D.: Hauteurs et isogénies. Astérisque 183, 107–125 (1990) MathSciNetGoogle Scholar
  18. 489.
    Beukers, F.: The diophantine equation Ax p+By q=Cz r. Duke Math. J. 91, 61–88 (1998) MathSciNetMATHGoogle Scholar
  19. 604.
    Bombieri, E.: The Mordell conjecture revisited. Ann. Sc. Norm. Super. Pisa, Cl. Sci. 17, 615–640 (1990); corr. 18, 473 (1991) MathSciNetMATHGoogle Scholar
  20. 629.
    Borel, A.: Formes automorphes et séries de Dirichlet (d’aprés R.P. Langlands). In: Lecture Notes in Math., vol. 514, pp. 185–222. Springer, Berlin (1976) Google Scholar
  21. 631.
    Borel, A., Casselman, W. (eds.): Automorphic Forms, Representations and L-functions, I, II. Proc. Symposia Pure Math., vol. 33. Am. Math. Soc., Providence (1979) Google Scholar
  22. 718.
    Breuil, C., Conrad, B., Diamond, F., Taylor, R.: On the modularity of elliptic curves over Q: wild 3-adic exercises. J. Am. Math. Soc. 14, 843–939 (2001) MathSciNetMATHGoogle Scholar
  23. 733.
    Brillhart, J., Tonascia, J., Weinberger, P.: On the Fermat quotient. In: Computers in Number Theory, pp. 213–222. Academic Press, San Diego (1971) Google Scholar
  24. 789.
    Bruin, N.: The diophantine equations x 2±y 4z 6 and x 2+y 8=z 3. Compos. Math. 118, 305–321 (1999) MathSciNetMATHGoogle Scholar
  25. 790.
    Bruin, N.: Chabauty methods and covering techniques applied to generalized Fermat equations. Thesis, Univ. Leiden (1999). [CWI Tracts 133, 1–77 (2002)] Google Scholar
  26. 791.
    Bruin, N.: On powers as sums of two cubes. In: Lecture Notes in Comput. Sci., vol. 1838, pp. 169–184. Springer, Berlin (2000) Google Scholar
  27. 792.
    Bruin, N.: Chabauty methods using elliptic curves. J. Reine Angew. Math. 562, 27–49 (2003) MathSciNetMATHGoogle Scholar
  28. 793.
    Bruin, N.: The primitive solutions to x 3+y 9=z 2. J. Number Theory 111, 179–189 (2005) MathSciNetMATHGoogle Scholar
  29. 827.
    Buhler, J.[P.], Crandall, R., Ernvall, R., Metsänkylä, T.: Irregular primes and cyclotomic invariants to four million. Math. Comput. 61, 151–153 (1993) MATHGoogle Scholar
  30. 828.
    Buhler, J.[P.], Crandall, R., Ernvall, R., Metsänkylä, T., Shokrollahi, M.A.: Irregular primes and cyclotomic invariants to 12 million. J. Symb. Comput. 31, 89–96 (2001) MATHGoogle Scholar
  31. 829.
    Buhler, J.P., Crandall, R., Sompolski, R.W.: Irregular primes to one million. Math. Comput. 59, 717–722 (1992) MathSciNetMATHGoogle Scholar
  32. 894.
    Caporaso, L.: On certain uniformity properties of curves over function fields. Compos. Math. 130, 1–19 (2002) MathSciNetMATHGoogle Scholar
  33. 897.
    Carayol, H.: Sur les représentations galoisiennes modulo attachées aux formes modulaires. Duke Math. J. 59, 785–801 (1989) MathSciNetMATHGoogle Scholar
  34. 902.
    Carlitz, L.: Note on irregular primes. Proc. Am. Math. Soc. 5, 329–331 (1954) MATHGoogle Scholar
  35. 903.
    Carlitz, L., Olson, F.R.: Maillet’s determinant. Proc. Am. Math. Soc. 6, 265–269 (1955) MathSciNetMATHGoogle Scholar
  36. 980.
    Chai, C.-L.: A note on Manin’s theorem of the kernel. Am. J. Math. 113, 387–389 (1991) MathSciNetMATHGoogle Scholar
  37. 997.
    Chang, K.-Y., Kwon, S.-H.: Class numbers of imaginary Abelian number fields. Proc. Am. Math. Soc. 128, 2517–2528 (2000) MathSciNetMATHGoogle Scholar
  38. 1104.
    Chudnovsky, D.V., Chudnovsky, G.V.: Padé approximations and Diophantine geometry. Proc. Natl. Acad. Sci. USA 82, 2212–2216 (1985) MathSciNetMATHGoogle Scholar
  39. 1149.
    Cohen, J.W.: Felix Pollaczek, 1892–1981. J. Appl. Probab. 18, 958–963 (1981) MathSciNetGoogle Scholar
  40. 1180.
    Coleman, R.F.: Effective Chabauty. Duke Math. J. 52, 765–770 (1985) MathSciNetMATHGoogle Scholar
  41. 1181.
    Coleman, R.F.: Manin’s proof of the Mordell conjecture over function fields. Enseign. Math. 36, 393–427 (1990) MathSciNetMATHGoogle Scholar
  42. 1199.
    Conrad, B., Diamond, F., Taylor, R.: Modularity of certain potentially Barsotti-Tate Galois representations. J. Am. Math. Soc. 12, 521–567 (1999) MathSciNetMATHGoogle Scholar
  43. 1247.
    Coppersmith, D.: Fermat’s last theorem (case 1) and the Wieferich criterion. Math. Comput. 54, 895–902 (1990) MathSciNetMATHGoogle Scholar
  44. 1248.
    Cornacchia, G.: Sulla congruenza x n+y nz n (mod p). Giornale Mat. 16, 219–268 (1909) Google Scholar
  45. 1249.
    Cornell, G., Silverman, J.H., Stevens, S. (eds.): Modular Forms and Fermat’s Last Theorem. Springer, Berlin (1997) MATHGoogle Scholar
  46. 1276.
    Crandall, R.[E.], Dilcher, K., Pomerance, C.: A search for Wieferich and Wilson primes. Math. Comput. 66, 433–449 (1997) MathSciNetMATHGoogle Scholar
  47. 1330.
    Darmon, H.: The equation x 4y 4=z p. C. R. Acad. Sci. Can. 15, 286–290 (1993) MathSciNetMATHGoogle Scholar
  48. 1331.
    Darmon, H.: The equations \(x\sp n+ y\sp n= z\sp2\) and x n+y n=z 3. Internat. Math. Res. Notices, 1993, 263–274 Google Scholar
  49. 1332.
    Darmon, H.: The Shimura-Taniyama conjecture. Usp. Mat. Nauk 50(3), 503–548 (1995) (in Russian) MathSciNetMATHGoogle Scholar
  50. 1333.
    Darmon, H., Diamond, F., Taylor, R.: Fermat’s last theorem. In: Current Developments in Mathematics, 1995, pp. 1–154. International Press, Cambridge (1994) [Updated version in: Elliptic Curves, Modular Forms & Fermat’s Last Theorem (Hong Kong, 1993), pp. 2–140. Cambridge, MA, 1997] Google Scholar
  51. 1334.
    Darmon, H., Granville, A.: On the equations z m=F(x,y) and Ax p+By q=Cz r. Bull. Lond. Math. Soc. 27, 513–543 (1995) MathSciNetMATHGoogle Scholar
  52. 1335.
    Darmon, H., Merel, L.: Winding quotients and some variants of Fermat’s Last Theorem. J. Reine Angew. Math. 490, 81–100 (1997) MathSciNetMATHGoogle Scholar
  53. 1407.
    David, S.: Minorations de formes linéaires de logarithmes elliptiques. Mém. Soc. Math. Fr. 62, 1–143 (1995) MATHGoogle Scholar
  54. 1449.
    Deligne, P.: Preuve des conjectures de Tate et de Shafarevitch (d’aprés G. Faltings). Astérisque 121–122, 25–41 (1985) MathSciNetGoogle Scholar
  55. 1460.
    Demyanenko, V.A.: The points of finite order of elliptic curves. Acta Arith. 19, 185–194 (1971) MathSciNetGoogle Scholar
  56. 1471.
    Dénes, P.: An extension of Legendre’s criterion in connection with the first case of Fermat’s last theorem. Publ. Math. (Debr.) 2, 115–120 (1951) MATHGoogle Scholar
  57. 1472.
    Dénes, P.: Über die Diophantische Gleichung x l+y l=cz l. Acta Math. 88, 241–251 (1952) MathSciNetMATHGoogle Scholar
  58. 1473.
    Dénes, P.: Proof of a conjecture of Kummer. Publ. Math. (Debr.) 2, 206–214 (1952) Google Scholar
  59. 1474.
    Dénes, P., Turán, P.: A second note on Fermat’s conjecture. Publ. Math. (Debr.) 4, 28–32 (1955) [[6227], vol. 1, pp. 760–764] MATHGoogle Scholar
  60. 1492.
    Deshouillers, J.-M., Iwaniec, H.: On the Brun-Titchmarsh theorem on average. In: Topics in Classical Number Theory, pp. 319–333. North-Holland, Amsterdam (1984) Google Scholar
  61. 1506.
    Deuring, M.: Die Zetafunktion einer algebraischen Kurve vom Geschlechte Eins, I. Nachr. Ges. Wiss. Göttingen, 1953, 85–94 Google Scholar
  62. 1507.
    Deuring, M.: Die Zetafunktion einer algebraischen Kurve vom Geschlechte Eins, II. Nachr. Ges. Wiss. Göttingen, 1955, 13–42 Google Scholar
  63. 1508.
    Deuring, M.: Die Zetafunktion einer algebraischen Kurve vom Geschlechte Eins, III. Nachr. Ges. Wiss. Göttingen, 1956, 37–76 Google Scholar
  64. 1509.
    Deuring, M.: Die Zetafunktion einer algebraischen Kurve vom Geschlechte Eins, IV. Nachr. Ges. Wiss. Göttingen, 1957, 55–80 Google Scholar
  65. 1518.
    Diamond, F.: On deformation rings and Hecke rings. Ann. Math. 144, 137–166 (1996) MathSciNetMATHGoogle Scholar
  66. 1519.
    Diamond, F., Kramer, K.: Modularity of a family of elliptic curves. Math. Res. Lett. 2, 299–304 (1995) MathSciNetMATHGoogle Scholar
  67. 1538.
    Dickson, L.E.: On the last theorem of Fermat. Messenger Math. 38, 14–32 (1908/1909) Google Scholar
  68. 1539.
    Dickson, L.E.: On the last theorem of Fermat, II. Q. J. Math. 40, 27–45 (1908) MATHGoogle Scholar
  69. 1540.
    Dickson, L.E.: Lower limit for the number of sets of solutions of x e+y e+z e≡0 (mod p). J. Reine Angew. Math. 135, 181–188 (1909) MATHGoogle Scholar
  70. 1573.
    Dieulefait, L.: The level 1 weight 2 case of Serre’s conjecture. Rev. Math. Iberoam. 23, 1115–1124 (2007) MathSciNetMATHGoogle Scholar
  71. 1582.
    Dirichlet, P.G.L.: Mémoire sur l’impossibilité de quelques équations indéterminées du cinquiéme degré. J. Reine Angew. Math. 3, 354–375 (1828) [[1593], pp. 21–46] MATHGoogle Scholar
  72. 1583.
    Dirichlet, P.G.L.: Démonstration du théorème de Fermat pour le cas de 14iémes puissances. J. Reine Angew. Math. 9, 390–393 (1832) [[1593], pp. 189–194] MATHGoogle Scholar
  73. 1654.
    Duparc, H.J.A., van Wijngaarden, A.: A remark on Fermat’s last theorem. Nieuw Arch. Wiskd. 1, 123–128 (1953) MATHGoogle Scholar
  74. 1687.
    Edixhoven, B.: The weight in Serre’s conjectures on modular forms. Invent. Math. 109, 563–594 (1992) MathSciNetMATHGoogle Scholar
  75. 1689.
    Edixhoven, B.: Serre’s conjecture. In: Cornell, G., Silverman, J.H., Stevens, S. (eds.) Modular Forms and Fermat’s Last Theorem, pp. 209–242. Springer, Berlin (1997) Google Scholar
  76. 1690.
    Edwards, H.M.: Fermat’s Last Theorem, A Genetic Introduction to Algebraic Number Theory. Springer, Berlin (1977) [Reprint: 1996] MATHGoogle Scholar
  77. 1699.
    Eichler, M.: Quaternäre quadratische Formen und die Riemannsche Vermutung für die Kongruenzzetafunktion. Arch. Math. 5, 355–366 (1954) MathSciNetMATHGoogle Scholar
  78. 1701.
    Eichler, M.: Eine Bemerkung zur Fermatschen Vermutung. Acta Arith. 11, 129–131 (1965); corr. p. 261 MathSciNetGoogle Scholar
  79. 1722.
    Elkies, N.D.: Wiles minus epsilon implies Fermat. In: Elliptic Curves, Modular Forms, & Fermat’s Last Theorem, Hong Kong, 1993, pp. 38–40. Cambridge University Press, Cambridge (1995) Google Scholar
  80. 1870.
    Ernvall, R., Metsänkylä, T.: Cyclotomic invariants for primes between 125 000 and 150 000. Math. Comput. 56, 851–858 (1991) MATHGoogle Scholar
  81. 1871.
    Ernvall, R., Metsänkylä, T.: Cyclotomic invariants for primes to one million. Math. Comput. 59, 249–250 (1992) MATHGoogle Scholar
  82. 1898.
    Euler, L.: Theorematum quorundam arithmeticorum demonstrationes. Comment. Acad. Sci. Petropol. 10(1738), 125–146 (1747) [[1908], ser. 1, vol. 2, pp. 38–58] Google Scholar
  83. 1900.
    Euler, L.: Supplementum quorundam theorematum arithmeticorum quae in nonnullis demonstrationibus supponuntur. Novi Comment. Acad. Sci. Petropol. 8(1760/1761), 105–128 (1763) [[1908], ser. 1, vol. 2, pp. 556–575] Google Scholar
  84. 1901.
    Euler, L.: Vollständige Anleitung zur Algebra. Akademie der Wissenschaften, St. Petersbourg (1770) [[1908], ser. 1, vol. 1] Google Scholar
  85. 1954.
    Faltings, G.: Endlichkeitssätze für abelsche Varietäten über Zahlkörpern. Invent. Math. 73, 349–366 (1983); corr. vol. 75, 1984, p. 381 MathSciNetMATHGoogle Scholar
  86. 1955.
    Faltings, G., Wüstholz, G. (eds.): Rational Points. Vieweg, Braunschweig (1984); 2nd ed., 1986, 3rd ed. 1992 MATHGoogle Scholar
  87. 1958.
    Farhi, B.: Une approche polynomiale du théorème de Faltings. C. R. Acad. Sci. Paris 340, 103–106 (2005) MathSciNetMATHGoogle Scholar
  88. 1989.
    Fermat, P.: Observationes Domini Petri de Fermat. In: [2040], vol. 1, pp. 292–342 [French translation: [1991], vol. 3, pp. 241–274] Google Scholar
  89. 1999.
    Figueredo, L.M.: Serre’s conjecture for imaginary quadratic fields. Compos. Math. 118, 103–122 (1999) Google Scholar
  90. 2046.
    Fouvry, É.: Sur le théorème de Brun-Titchmarsh. Acta Arith. 43, 417–424 (1984) MathSciNetMATHGoogle Scholar
  91. 2050.
    Fouvry, É.: Théorème de Brun-Titchmarsh: application au théorème de Fermat. Invent. Math. 79, 383–407 (1985) MathSciNetMATHGoogle Scholar
  92. 2088.
    Frey, G.: Rationale Punkte auf Fermatkurven und getwisteten Modulkurven. J. Reine Angew. Math. 331, 185–191 (1982) MathSciNetMATHGoogle Scholar
  93. 2089.
    Frey, G.: Links between stable elliptic curves and certain Diophantine equations. Ann. Univ. Sarav. Ser. Math. 1, 1–40 (1986) MathSciNetGoogle Scholar
  94. 2090.
    Frey, G.: Links between elliptic curves and solutions of AB=C. J. Indian Math. Soc. 51, 117–145 (1987) MathSciNetMATHGoogle Scholar
  95. 2115.
    Frobenius, G.: Über den Fermatschen Satz. J. Reine Angew. Math. 137, 314–316 (1910) [[2120], vol. 3, pp. 428–430] MATHGoogle Scholar
  96. 2116.
    Frobenius, G.: Über den Fermatschen Satz, II. SBer. Kgl. Preuß. Akad. Wiss. Berlin, 1910, 200–208 [[2120], vol. 3, pp. 431–439] Google Scholar
  97. 2119.
    Frobenius, G.: Über den Fermatschen Satz. III, SBer. Kgl. Preuß. Akad. Wiss. Berlin, 1914, 653–681 [[2120], vol. 3, pp. 648–676] Google Scholar
  98. 2131.
    Fueter, R.: Kummers Kriterium zum letzten Theorem von Fermat. Math. Ann. 85, 11–20 (1922) MathSciNetMATHGoogle Scholar
  99. 2144.
    Fung, G.[W.], Granville, A., Williams, H.C.: Computation of the first factor of the class number of cyclotomic fields. J. Number Theory 42, 297–312 (1992) MathSciNetMATHGoogle Scholar
  100. 2153.
    Furtwängler, Ph.: Die Konstruktion des Klassenkörpers für beliebige algebraische Zahlkörper. Nachr. Ges. Wiss. Göttingen, 1904, 173–195 Google Scholar
  101. 2156.
    Furtwängler, P.: Allgemeiner Existenzbeweis für den Klassenkörper eines beliebigen algebraischen Zahlkörpers. Math. Ann. 63, 1–37 (1907) MATHGoogle Scholar
  102. 2160.
    Furtwängler, P.: Untersuchungen über die Kreisteilungskörper und den letzten Fermatschen Satz. Nachr. Ges. Wiss. Göttingen, 1910, 554–562 Google Scholar
  103. 2162.
    Furtwängler, P.: Letzter Fermatscher Satz und Eisensteinsches Reziprozitätsprinzip. SBer. Kais. Akad. Wissensch. Wien 121, 589–592 (1912) MATHGoogle Scholar
  104. 2312.
    Granville, A.: The set of exponents, for which Fermat’s last theorem is true, has density one. C. R. Acad. Sci. Paris Acad. Sci. Soc. R. Can. 7, 55–60 (1985) MathSciNetMATHGoogle Scholar
  105. 2313.
    Granville, A.: On Krasner’s criteria for the first case of Fermat’s last theorem. Manuscr. Math. 56, 67–70 (1986) MathSciNetMATHGoogle Scholar
  106. 2314.
    Granville, A.: On the size of the first factor of the class number of a cyclotomic field. Invent. Math. 100, 321–338 (1990) MathSciNetMATHGoogle Scholar
  107. 2319.
    Granville, A., Monagan, M.B.: The first case of Fermat’s last theorem is true for all prime exponents up to 714 591 416 091 389. Trans. Am. Math. Soc. 306, 329–359 (1988) MathSciNetMATHGoogle Scholar
  108. 2323.
    Granville, A., Soundararajan, K.: A binary additive problem of Erdős and the order of 2 mod p 2. Ramanujan J. 2, 283–298 (1998) MathSciNetMATHGoogle Scholar
  109. 2329.
    Grauert, H.: Mordell’s Vermutung über rationale Punkte auf algebraischen Kurven und Funktionenkörper. Publ. Math. Inst. Hautes Études Sci. 25, 131–149 (1965) MathSciNetGoogle Scholar
  110. 2376.
    Grytczuk, A.: On the equation of Fermat in the second case. C. R. Acad. Sci. Paris 317, 25–28 (1993) MathSciNetMATHGoogle Scholar
  111. 2380.
    Gunderson, N.G.: Derivation of criteria for the first case of Fermat’s last theorem and the combination of these criteria to produce a new lower bound for the exponent. Ph.D. thesis, Cornell Univ. (1949) Google Scholar
  112. 2448.
    Halberstadt, E., Kraus, A.: Courbes de Fermat: résultats et problèmes. J. Reine Angew. Math. 548, 167–234 (2002) MathSciNetMATHGoogle Scholar
  113. 2572.
    Harris, M., Taylor, R.: The Geometry and Cohomology of Some Simple Shimura Varieties. Ann. of Math. Stud., vol. 151. Princeton University Press, Princeton (2001) MATHGoogle Scholar
  114. 2639.
    Heath-Brown, D.R.: Fermat’s Last Theorem for “almost all” exponents. Bull. Lond. Math. Soc. 17, 15–16 (1985) MathSciNetMATHGoogle Scholar
  115. 2674.
    Hecke, E.: Über nicht-reguläre Primzahlen und den Fermatschen Satz. Nachr. Ges. Wiss. Göttingen, 1910, 420–424 [[2703], pp. 59–63] Google Scholar
  116. 2705.
    Heier, G.: Uniformly effective Shafarevich conjecture on families of hyperbolic curves over a curve with prescribed degeneracy locus. J. Math. Pures Appl. 83, 845–867 (2004) MathSciNetMATHGoogle Scholar
  117. 2722.
    Hellegouarch, Y.: Étude des points d’ordre fini des variétés abéliennes de dimension un définies sur un anneau principal. J. Reine Angew. Math. 244, 20–36 (1970) MathSciNetMATHGoogle Scholar
  118. 2723.
    Hellegouarch, Y.: Sur un théorème de Maillet. C. R. Acad. Sci. Paris 273, 477–478 (1971) MathSciNetMATHGoogle Scholar
  119. 2724.
    Hellegouarch, Y.: Points d’ordre 2p h sur les courbes elliptiques. Acta Arith. 26, 253–263 (1974/1975) MathSciNetGoogle Scholar
  120. 2725.
    Hellegouarch, Y.: Invitation aux mathématiques de Fermat-Wiles. Masson, Paris (1997); 2nd ed. 2001. [English translation: Invitation to the Mathematics of Fermat-Wiles, Academic Press, 2002] MATHGoogle Scholar
  121. 2729.
    Henniart, G.: Une preuve simple des conjectures de Langlands pour GL(n) sur un corps p-adique. Invent. Math. 139, 439–455 (2000) MathSciNetMATHGoogle Scholar
  122. 2730.
    Henniart, G.: Une caractérisation de la correspondance de Langlands locale pour GL(n). Bull. Soc. Math. Fr. 130, 587–602 (2002) MathSciNetMATHGoogle Scholar
  123. 2815.
    Hindry, M., Silverman, J.: Diophantine Geometry. Springer, Berlin (2000) MATHGoogle Scholar
  124. 2850.
    Holzer, L.: Über die Gleichung (x+y)(x 2+y 2)=4Cz 3. Monatshefte Math. Phys. 26, 289–294 (1915) MathSciNetGoogle Scholar
  125. 2866.
    Hooley, C.: On the largest prime factor of p+a. Mathematika 20, 135–143 (1973) MathSciNetMATHGoogle Scholar
  126. 2964.
    Hurwitz, A.: Über die Kongruenz ax e+by e+cz e≡0(modp). J. Reine Angew. Math. 136, 272–292 (1909) [[2965], vol. 2, pp. 430–445. ] MATHGoogle Scholar
  127. 3026.
    Inkeri, K.: Abschätzungen für eventuelle Lösungen der Gleichung im Fermatschen Problem. Ann. Univ. Turku A 16(1), 1–9 (1953) MathSciNetGoogle Scholar
  128. 3050.
    Ivorra, W., Kraus, A.: Quelques résultats sur les équations ax p+by p=cz 2. Can. J. Math. 58, 115–153 (2006) MathSciNetMATHGoogle Scholar
  129. 3076.
    Jacobi, C.G.J.: Beantwortung der Aufgabe Seite 212 des 3ten Bandes des Crelleschen Journals: “Kann α μ−1, wenn μ eine Primzahl und α eine ganze Zahl und kleiner als μ und grösser als 1 ist, durch μμ teilbar sein?” J. Reine Angew. Math. 3, 238–239 (1828) [[3082], vol. 6, pp. 238–239] Google Scholar
  130. 3103.
    Jänichen, W.: Über einen zahlentheoretischen Satz von Hurwitz. Math. Z. 17, 277–292 (1923) MathSciNetGoogle Scholar
  131. 3123.
    Jensen, K.L.: Om talteoretiske Egenskaber ved de Bernoulliske tal. Nyt Tidsskr. Mat. B 26, 73–83 (1915) Google Scholar
  132. 3128.
    Jha, V.: On Krasnér’s theorem for the first case of Fermat’s last theorem. Colloq. Math. 67, 25–31 (1994) MathSciNetMATHGoogle Scholar
  133. 3148.
    Johnson, W.: Irregular primes and cyclotomic invariants. Math. Comput. 29, 113–120 (1975) MATHGoogle Scholar
  134. 3220.
    Kalužnin, L.A., et al.: Vladimir Petrovič Velmin. Usp. Mat. Nauk 31(1), 229–235 (1976) (in Russian) Google Scholar
  135. 3247.
    Kapferer, H.: Verifizierung des symmetrischen Teils der Fermatschen Vermutung für unendlich viele paarweise teilerfremde Exponenten. J. Reine Angew. Math. 214/215, 360–372 (1964) MathSciNetGoogle Scholar
  136. 3296.
    Keller, W., Löh, G.: The criteria of Kummer and Mirimanoff extended to include 22 consecutive irregular pairs. Tokyo J. Math. 6, 397–402 (1983) MathSciNetGoogle Scholar
  137. 3312.
    Khare, C.: Serre’s modularity conjecture: the level one case. Duke Math. J. 134, 557–589 (2006) MathSciNetMATHGoogle Scholar
  138. 3313.
    Khare, C.: Serre’s modularity conjecture: a survey of the level one case. In: L-functions and Galois Representations, pp. 270–299. Cambridge University Press, Cambridge (2007) Google Scholar
  139. 3314.
    Khare, C., Wintenberger, J.-P.: On Serre’s conjecture for 2-dimensional mod p representations of \(\mathrm{Gal}(\overline{Q}/Q)\). Ann. Math. 169, 229–253 (2009) MathSciNetMATHGoogle Scholar
  140. 3315.
    Khare, C., Wintenberger, J.-P.: Serre’s modularity conjecture, I. Invent. Math. 178, 485–504 (2009) MathSciNetMATHGoogle Scholar
  141. 3316.
    Khare, C., Wintenberger, J.-P.: Serre’s modularity conjecture, II. Invent. Math. 178, 505–586 (2009) MathSciNetMATHGoogle Scholar
  142. 3344.
    Kisin, M.: Modularity of 2-adic Barsotti-Tate representations. Invent. Math. 178, 587–634 (2009) MathSciNetMATHGoogle Scholar
  143. 3402.
    Knauer, J., Richstein, J.: The continuing search for Wieferich primes. Math. Comput. 74, 1559–1563 (2005) MathSciNetMATHGoogle Scholar
  144. 3465.
    Kolyvagin, V.A.: The Fermat equations over cyclotomic fields. Tr. Mat. Inst. Steklova 208, 163–185 (1995) (in Russian) MathSciNetGoogle Scholar
  145. 3466.
    Kolyvagin, V.A.: On the first case of the Fermat theorem for cyclotomic fields. J. Math. Sci. 106, 3302–3311 (2001) MathSciNetMATHGoogle Scholar
  146. 3467.
    Kolyvagin, V.A.: The Fermat equation over a tower of cyclotomic fields. Izv. Akad. Nauk SSSR, Ser. Mat. 65, 85–122 (2001) (in Russian) MathSciNetGoogle Scholar
  147. 3492.
    Korselt, A.: Veränderliche Lösung von x m+y n+z r=0. Arch. Math. Phys. 25, 89–91 (1917) Google Scholar
  148. 3511.
    Krasner, M.: Sur le premier cas du théoreme de Fermat. C. R. Acad. Sci. Paris 199, 256–258 (1934) Google Scholar
  149. 3519.
    Kraus, A.: Majorations effectives pour l’équation de Fermat généralisée. Can. J. Math. 49, 1139–1161 (1997) MathSciNetMATHGoogle Scholar
  150. 3520.
    Kraus, A.: Sur l’équation a 3+b 3=c p. Exp. Math. 7, 1–13 (1998) MathSciNetMATHGoogle Scholar
  151. 3575.
    Kummer, E.E.: De aequatione x 2λ+y 2λ=z 2λ per numeros integros resolvenda. J. Reine Angew. Math. 17, 203–209 (1837) [[3583], vol. 1, pp. 135–141] MATHGoogle Scholar
  152. 3578.
    Kummer, E.E.: Allgemeiner Beweis des Fermat’schen Satzes, dass die Gleichung x λ+y λ=z λ durch ganze Zahlen unlösbar ist, für alle diejenigen Potenz-Exponenten λ, welche ungerade Primzahlen sind und in den Zählern der ersten \(\frac{1}{2}(\lambda-3)\) Bernoulli’schen Zahlen als Factoren nicht vorkommen. J. Reine Angew. Math. 40, 130–138 (1850) [[3583], vol. 1, pp. 336–344] Google Scholar
  153. 3579.
    Kummer, E.E.: Mémoire sur la théorie des nombres complexes composés de racines de l’unité et des nombres entiers. J. Math. Pures Appl. 16, 377–498 (1851) [[3583], vol. 1, pp. 363–484] Google Scholar
  154. 3580.
    Kummer, E.E.: Einige Sätze über die aus den Wurzeln der Gleichung α λ=1 gebildeten complexen Zahlen, für den Fall, dass die Klassenzahl durch λ theilbar ist, nebst Anwendung derselben auf einen weiteren Beweis des letzten Fermat’schen Lehrsatzes. Abhandl. Kgl. Preuss. Akad. Wiss. Berlin, 1857, 41–74. [[3583], vol. 1, pp. 639–672] Google Scholar
  155. 3582.
    Kummer, E.E.: Über die Classenanzahl der aus n-ten Einheitswurzeln gebildeten complexen Zahlen. Mon. Ber. Kgl. Preuß. Akad. Wiss., 1861, 1051–1053 [[3583], pp. 883–885] Google Scholar
  156. 3583.
    Kummer, E.E.: Collected Papers, vols. 1, 2, Springer, Berlin (1975) Google Scholar
  157. 3703.
    Lang, S.: Some history of the Shimura-Taniyama conjecture. Not. Am. Math. Soc. 42, 1301–1307 (1995) MATHGoogle Scholar
  158. 3713.
    Langlands, R.P.: Problems in the theory of automorphic forms. In: Lecture Notes in Math., vol. 170, pp. 18–61. Springer, Berlin (1970) Google Scholar
  159. 3714.
    Langlands, R.P.: Automorphic representations, Shimura varieties, and motives. Ein Märchen. In: Proc. Symposia Pure Math., vol. 33, part 2, pp. 205–246. Am. Math. Soc., Providence (1977) Google Scholar
  160. 3744.
    Le, M.H.: Lower bounds for the solutions in the second case of Fermat’s last theorem. Proc. Am. Math. Soc. 111, 921–923 (1991) MATHGoogle Scholar
  161. 3757.
    Ledermann, W.: Herbert Westren Turnbull. J. Lond. Math. Soc. 38, 123–128 (1963) MathSciNetMATHGoogle Scholar
  162. 3767.
    Legendre, A.M.: Essai sur la théorie des nombres, Duprat, Paris (1798) [2nd ed. 1808, 3rd ed.: Théorie des nombres, Paris, 1830; German translation: Teubner, 1886, 1894] Google Scholar
  163. 3775.
    Lehmer, D.H.: A note on Fermat’s last theorem. Bull. Am. Math. Soc. 38, 723–724 (1932) MathSciNetGoogle Scholar
  164. 3791.
    Lehmer, D.H.: On Fermat’s quotient, base two. Math. Comput. 36, 289–290 (1981) MathSciNetMATHGoogle Scholar
  165. 3793.
    Lehmer, D.H., Lehmer, E.: On the first case of Fermat’s last theorem. Bull. Am. Math. Soc. 47, 139–142 (1941) MathSciNetGoogle Scholar
  166. 3798.
    Lehmer, D.H., Lehmer, E., Vandiver, H.S.: An application of high-speed computing to Fermat’s last theorem. Proc. Natl. Acad. Sci. USA 40, 25–33 (1954) MathSciNetMATHGoogle Scholar
  167. 3799.
    Lehmer, D.H., Masley, J.M.: Table of the cyclotomic class numbers h (p) and their factors for 200<p<521. Math. Comput. 32, 577–582 (1978) MathSciNetGoogle Scholar
  168. 3828.
    Lepistö, T.: The first factor of the class number of the cyclotomic field \(k(e^{2\pi i/p^{n}})\). Ann. Univ. Turku 70, 1–7 (1963) Google Scholar
  169. 3829.
    Lepistö, T.: On the first factor of the class number of the cyclotomic field and Dirichlet’s L-functions. Ann. Univ. Turku 387, 1–53 (1966) Google Scholar
  170. 3831.
    Lepistö, T.: On the growth of the first factor of the class number of the prime cyclotomic field. Ann. Acad. Sci. Fenn., Ser. A 1 Math. 577, 1–21 (1974) Google Scholar
  171. 3837.
    Lerch, M.: Zur Theorie des Fermatschen Quotienten \({a^{p-1}-1\over p}=q(a)\). Math. Ann. 60, 471–490 (1905) MathSciNetMATHGoogle Scholar
  172. 3884.
    Libri, G.: Mémoire sur la théorie des nombres. J. Reine Angew. Math. 9, 54–80, 169–188, 261–276 (1832) Google Scholar
  173. 4108.
    Maillet, E.: Sur l’équation indéterminée \(ax^{\lambda ^{t}}+by^{\lambda^{t}}=cz^{\lambda^{t}}\). In: C.R. 26 Session Assoc. Française pour l’avancement des Sciences, Paris, vol. 2, pp. 156–168 (1898) Google Scholar
  174. 4111.
    Maillet, E.: Question 4269. L’Intermédiaire Math. 20, 218 (1913) Google Scholar
  175. 4117.
    Malo, E.: L’Intermédiaire Math., 21, 1914, 173–176 Google Scholar
  176. 4131.
    Manin, Yu.I.: Rational points on algebraic curves over function fields. Izv. Akad. Nauk SSSR, Ser. Mat. 27, 1395–1440 (1963) (in Russian) MathSciNetMATHGoogle Scholar
  177. 4142.
    Mann, H.B., Webb, W.A.: A short proof of Fermat’s theorem for n=3. Math. Stud. 46, 103–104 (1982) MathSciNetMATHGoogle Scholar
  178. 4167.
    Masley, J.M.: Cyclotomic fields with unique factorization. J. Reine Angew. Math. 286/287, 248–256 (1976) MathSciNetGoogle Scholar
  179. 4183.
    Masser, D.W., Wüstholz, G.: Estimating isogenies on elliptic curves. Invent. Math. 100, 1–24 (1990) MathSciNetMATHGoogle Scholar
  180. 4184.
    Masser, D.W., Wüstholz, G.: Isogeny estimates for abelian varieties, and finiteness theorems. Ann. Math. 137, 459–472 (1993) MATHGoogle Scholar
  181. 4211.
    Mauldin, R.D.: A generalization of Fermat’s last theorem: the Beal conjecture and prize problem. Not. Am. Math. Soc. 44, 1436–1437 (1997) MathSciNetMATHGoogle Scholar
  182. 4222.
    McCallum, W.G.: On the method of Coleman and Chabauty. Math. Ann. 299, 565–596 (1994) MathSciNetMATHGoogle Scholar
  183. 4237.
    Meissner, W.: Über die Teilbarkeit von 2p−2 durch das Quadrat der Primzahl p=1093. SBer. Preuß. Akad. Wiss. Berlin, 1913, 663–667 Google Scholar
  184. 4261.
    Mertens, F.: Über den Kummerschen Logarithmus einer komplexen Zahl des Bereichs einer primitiven λ-ten Einheitswurzel in bezug auf den Modul λ 1+n, wo λ eine ungerade Primzahl bezeichnet. SBer. Kais. Akad. Wissensch. Wien 126, 1337–1343 (1917) MATHGoogle Scholar
  185. 4266.
    Metsänkylä, T.: Bemerkungen über den ersten Faktor der Klassenzahl des Kreiskörpers. Ann. Univ. Turku, Ser. AI 105, 1–15 (1967) Google Scholar
  186. 4268.
    Metsänkylä, T.: Estimations for L-functions and the class numbers of certain imaginary cyclic fields. Ann. Univ. Turku, Ser. AI 140, 1–11 (1970) Google Scholar
  187. 4269.
    Metsänkylä, T.: Note on the distribution of irregular primes. Ann. Acad. Sci. Fenn., Ser. A 1 Math. 492, 1–7 (1971) Google Scholar
  188. 4270.
    Metsänkylä, T.: On the growth of the first factor of the cyclotomic class number. Ann. Univ. Turku 155, 1–12 (1972) Google Scholar
  189. 4271.
    Metsänkylä, T.: Distribution of irregular prime numbers. J. Reine Angew. Math. 282, 126–130 (1976) MathSciNetMATHGoogle Scholar
  190. 4272.
    Metsänkylä, T.: The index of irregularity of primes. Expo. Math. 5, 143–156 (1987) MATHGoogle Scholar
  191. 4332.
    Mirimanoff, D.: L’équation indéterminée x l+y l+z l=0 et le criterion de Kummer. J. Reine Angew. Math. 128, 45–68 (1905) Google Scholar
  192. 4333.
    Mirimanoff, D.: Sur le dernier théorème de Fermat et le critérium de M.A. Wieferich. Enseign. Math. 11, 455–459 (1909) MATHGoogle Scholar
  193. 4334.
    Mirimanoff, D.: Sur le dernier théorème de Fermat. C. R. Acad. Sci. Paris 150, 204–206 (1910) MATHGoogle Scholar
  194. 4335.
    Mirimanoff, D.: Sur le dernier théorème de Fermat. J. Reine Angew. Math. 139, 309–324 (1911) MATHGoogle Scholar
  195. 4352.
    Montgomery, H.L.: Distribution of irregular primes. Ill. J. Math. 9, 553–558 (1965) MATHGoogle Scholar
  196. 4427.
    Morishima, T.: Über den Fermatschen Quotienten. Jpn. J. Math. 8, 159–173 (1931) MATHGoogle Scholar
  197. 4428.
    Morishima, T.: Über die Fermatsche Vermutung, VII. Proc. Jpn. Acad. Sci. 8, 63–66 (1932) MathSciNetGoogle Scholar
  198. 4429.
    Morishima, T.: Über die Fermatsche Vermutung, XI. Jpn. J. Math. 11, 241–252 (1935) MathSciNetMATHGoogle Scholar
  199. 4430.
    Morishima, T.: On Fermat’s last theorem (thirteenth paper). Trans. Am. Math. Soc. 72, 67–81 (1952) MathSciNetMATHGoogle Scholar
  200. 4433.
    Moriya, M.: Über die Fermatsche Vermutung. J. Reine Angew. Math. 169, 92–97 (1933) Google Scholar
  201. 4463.
    Mozzochi, C.J.: The Fermat Diary. Am. Math. Soc., Providence (2000) MATHGoogle Scholar
  202. 4476.
    Mumford, D.: A remark on Mordell’s conjecture. Am. J. Math. 87, 1007–1016 (1965) MathSciNetMATHGoogle Scholar
  203. 4493.
    Murty, M.R., Petridis, Y.N.: On Kummer’s conjecture. J. Number Theory 80, 294–303 (2001) MathSciNetGoogle Scholar
  204. 4597.
    Niedermeier, F.: Ein elementarer Beitrag zu Fermatschen Vermutung. J. Reine Angew. Math. 185, 111–112 (1943) MathSciNetMATHGoogle Scholar
  205. 4650.
    Obláth, R.: Untere Schranken für Lösungen der Fermatschen Gleichung. Port. Math. 11, 129–132 (1952) MATHGoogle Scholar
  206. 4659.
    Oesterlé, J.: Travaux de Wiles (et Taylor, …), II. Astérisque 237, 333–355 (1996) Google Scholar
  207. 4721.
    Pajunen, S.: Computations on the growth of the first factor for prime cyclotomic fields. Nor-disk Tidskr. Inf. 16, 85–87 (1976) MathSciNetMATHGoogle Scholar
  208. 4722.
    Pajunen, S.: Computations on the growth of the first factor for prime cyclotomic fields, II. Nor-disk Tidskr. Inf. 17, 113–114 (1977) MathSciNetMATHGoogle Scholar
  209. 4749.
    Paršin, A.N.: Algebraic curves over function fields. I. Izv. Akad. Nauk SSSR, Ser. Mat. 32, 1191–1219 (1968) (in Russian) MathSciNetGoogle Scholar
  210. 4765.
    Pellarin, F.: Sur une majoration explicite pour un degré d’isogénie liant deux courbes elliptiques. Acta Arith. 100, 203–243 (2001) MathSciNetMATHGoogle Scholar
  211. 4766.
    Pellet, A.E.: Mémoire sur la théorie algébrique des équations. Bull. Soc. Math. Fr. 15, 61–103 (1887) MathSciNetGoogle Scholar
  212. 4942.
    Pollaczek, F.: Über den grossen Fermatschen Satz. SBer. Kais. Akad. Wissensch. Wien 126, 45–59 (1917) MATHGoogle Scholar
  213. 4984.
    Poonen, B.: Some Diophantine equations of the form x n+y n=z m. Acta Arith. 86, 193–205 (1998) MathSciNetMATHGoogle Scholar
  214. 4988.
    Poonen, B., Schaefer, E.F., Stoll, M.: Twists of X(7) and primitive solutions to x 2+y 3=z 7. Duke Math. J. 137, 103–158 (2007) MathSciNetMATHGoogle Scholar
  215. 5009.
    Preisausschreibung der Kgl. Gesellschaft der Wissenschaften zu Göttingen für den Beweis des Fermatschen Satzes. Math. Ann. 66, 143 (1909) Google Scholar
  216. 5178.
    Ribenboim, P.: 13 Lectures on Fermat’s Last Theorem. Springer, Berlin (1979) MATHGoogle Scholar
  217. 5188.
    Ribet, K.A.: On modular representations of \(\mathrm{Gal}(\overline{Q}/Q)\) arising from modular forms. Invent. Math. 100, 431–476 (1990) MathSciNetMATHGoogle Scholar
  218. 5189.
    Ribet, K.A.: From the Taniyama-Shimura conjecture to Fermat’s last theorem. Ann. Fac. Sci. Toulouse 11, 116–139 (1990) MathSciNetMATHGoogle Scholar
  219. 5190.
    Ribet, K.A.: Galois representations and modular forms. Bull. Am. Math. Soc. 32, 375–402 (1995) MathSciNetMATHGoogle Scholar
  220. 5191.
    Ribet, K.A.: On the equation a p+2α b p+c p=0. Acta Arith. 79, 7–16 (1997) MathSciNetMATHGoogle Scholar
  221. 5192.
    Ribet, K.A., Stein, W.A.: Lectures on Serre’s conjectures. In: Arithmetic Algebraic Geometry, Park City, UT, 1999, pp. 143–232. Am. Math. Soc., Providence (2001) Google Scholar
  222. 5296.
    Rosser, [J.]B.: On the first case of Fermat’s last theorem. Bull. Am. Math. Soc. 45, 636–640 (1939) MathSciNetGoogle Scholar
  223. 5297.
    Rosser, [J.]B.: A new lower bound for the exponent in the first case of Fermat’s last theorem. Bull. Am. Math. Soc. 46, 299–304 (1940) MathSciNetGoogle Scholar
  224. 5298.
    Rosser, [J.]B.: An additional criterion for the first case of Fermat’s last theorem. Bull. Am. Math. Soc. 47, 109–110 (1941) MathSciNetGoogle Scholar
  225. 5331.
    Rubin, K., Silverberg, A.: A report on Wiles’ Cambridge lectures. Bull. Am. Math. Soc. 31, 15–38 (1994) MathSciNetMATHGoogle Scholar
  226. 5383.
    Samuel, P.: Compléments à un article de Hans Grauert sur la conjecture de Mordell. Publ. Math. Inst. Hautes Études Sci. 29, 55–62 (1966) MathSciNetGoogle Scholar
  227. 5509.
    Schmidt, W.M.: Thue’s equation over function fields. J. Aust. Math. Soc. A 25, 385–422 (1978) MATHGoogle Scholar
  228. 5565.
    Schoof, R.: Class numbers of real cyclotomic fields of prime conductor. Math. Comput. 72, 913–937 (2003) MathSciNetMATHGoogle Scholar
  229. 5567.
    Schreiber, F.: Emigration in Europe—the life and work of Félix Pollaczek. In: Charlemagne and His Heritage. 1200 Years of Civilization and Science in Europe, vol. II, pp. 179–194. Brepols, Turnhout (1998) Google Scholar
  230. 5570.
    Schrutka von Rechtenstamm, G.: Tabelle der (Relativ)-Klassenzahlen der Kreiskörper, deren ϕ-Funktion des Wurzelexponenten (Grad) nicht grösser als 256 ist. Abhandl. Deutsch. Akad. Wiss., 1964, nr. 2, 1–64 Google Scholar
  231. 5629.
    Selfridge, J.L., Nicol, C.A., Vandiver, H.S.: Proof of Fermat’s last theorem for all prime exponents less than 4002. Proc. Natl. Acad. Sci. USA 41, 970–973 (1955) MathSciNetMATHGoogle Scholar
  232. 5630.
    Selfridge, J.L., Pollack, B.W.: Fermat’s last theorem is true for any exponent up to 25,000. Not. Am. Math. Soc. 11, 97 (1964) Google Scholar
  233. 5637.
    Şengün, M.H.: The nonexistence of certain representations of the absolute Galois group of quadratic fields. Proc. Am. Math. Soc. 137, 27–35 (2009) MATHGoogle Scholar
  234. 5648.
    Serre, J.-P.: Valeurs propres des opérateurs de Hecke modulo l. Astérisque 24/25, 109–117 (1975) [[5661], vol. 3, pp. 226–234] Google Scholar
  235. 5655.
    Serre, J.-P.: Lettre à J.-F. Mestre. In: Contemp. Math., vol. 67, pp. 263–268. Am. Math. Soc., Providence (1987) [[5661], vol. 4, pp. 101–106] Google Scholar
  236. 5656.
    Serre, J.-P.: Sur les représentations modulaires de degré 2 de \(\mathrm{Gal}(\overline{Q}/Q)\). Duke Math. J. 54, 179–230 (1987) [[5661], vol. 4, pp. 107–158] MathSciNetMATHGoogle Scholar
  237. 5657.
    Serre, J.-P.: Résumé des cours au Collège de France, 1987–1988. In: Oeuvres, vol. 4, pp. 163–166. Springer, Berlin (1986–2000) Google Scholar
  238. 5660.
    Serre, J.-P.: Travaux de Wiles (et Taylor, …), I. Astérisque 237, 319–332 (1996) [[5661], vol. 4, pp. 524–542] Google Scholar
  239. 5692.
    Shimura, G.: Correspondances modulaires et les fonctions ζ de courbes algébriques. J. Math. Soc. Jpn. 10, 1–28 (1958) MathSciNetMATHGoogle Scholar
  240. 5693.
    Shimura, G.: On the zeta-functions of the algebraic curves uniformized by certain automorphic functions. J. Math. Soc. Jpn. 13, 275–331 (1961) MathSciNetMATHGoogle Scholar
  241. 5695.
    Shimura, G.: A reciprocity law in non-solvable extensions. J. Reine Angew. Math. 221, 209–220 (1966) MathSciNetMATHGoogle Scholar
  242. 5696.
    Shimura, G.: Construction of class fields and zeta functions of algebraic curves. Ann. Math. 85, 58–159 (1967) MathSciNetMATHGoogle Scholar
  243. 5698.
    Shimura, G.: Introduction to the Arithmetic Theory of Automorphic Functions. Princeton University Press, Princeton (1971); reprint 1994 MATHGoogle Scholar
  244. 5699.
    Shimura, G.: On elliptic curves with complex multiplication as factors of the Jacobians of modular function fields. Nagoya Math. J. 43, 199–208 (1971) MathSciNetMATHGoogle Scholar
  245. 5700.
    Shimura, G.: On the zeta-function of an abelian variety with complex multiplication. Ann. Math. 94, 504–533 (1971) MathSciNetMATHGoogle Scholar
  246. 5720.
    Shokrollahi, M.A.: Relative class number of imaginary abelian fields of prime conductor below 10 000. Math. Comput. 68, 1717–1728 (1999) MathSciNetMATHGoogle Scholar
  247. 5771.
    Siegel, C.L.: Zu zwei Bemerkungen Kummers. Nachr. Ges. Wiss. Göttingen, 1964, 51–57 [[5778], vol. 3, pp. 436–442] Google Scholar
  248. 5793.
    Silverman, J.H.: Wieferich’s criterion and the abc-conjecture. J. Number Theory 30, 226–237 (1988) MathSciNetMATHGoogle Scholar
  249. 5797.
    Simalarides, A.: Sophie Germain’s principle and Lucas numbers. Math. Scand. 67, 167–176 (1990) MathSciNetMATHGoogle Scholar
  250. 5800.
    Sitaraman, S.: Vandiver revisited. J. Number Theory 57, 122–129 (1996) MathSciNetMATHGoogle Scholar
  251. 5818.
    Skula, L., Slavutskii, I.Sh.: Bernoulli Numbers: Bibliography (1713–1983). J.E. Purkyne University, Brno (1987) MATHGoogle Scholar
  252. 5934.
    Stern, M.A.: Einige Bemerkungen über die Congruenz \({r^{p}-r\over p}\equiv a\ (\mathrm{mod}\ p)\). J. Reine Angew. Math. 100, 182–188 (1887) Google Scholar
  253. 5996.
    Suzuki, J.: On the generalized Wieferich criteria. Proc. Jpn. Acad. Sci. 70, 230–234 (1994) MATHGoogle Scholar
  254. 5997.
    Suzuki, Y.: Simple proof of Fermat’s last theorem for n=4. Proc. Jpn. Acad. Sci. 62, 209–210 (1986) MATHGoogle Scholar
  255. 6028.
    Szpiro, L.: Sur le théorème de rigidité de Parsin et Arakelov. Astérisque 64, 169–202 (1979) MathSciNetMATHGoogle Scholar
  256. 6029.
    Szpiro, L.: La conjecture (d’aprés G. Faltings). Astérisque 121/122, 83–103 (1985) MathSciNetGoogle Scholar
  257. 6045.
    Taniyama, Y.: L-functions of number fields and zeta functions of abelian varieties. J. Math. Soc. Jpn. 9, 330–366 (1957) MathSciNetMATHGoogle Scholar
  258. 6046.
    Tanner, J.W., Wagstaff, S.S. Jr.: New congruences for the Bernoulli numbers. Math. Comput. 48, 341–350 (1987) MathSciNetMATHGoogle Scholar
  259. 6047.
    Tanner, J.W., Wagstaff, S.S. Jr.: New bound for the first case of Fermat’s last theorem. Math. Comput. 53, 743–750 (1989) MathSciNetMATHGoogle Scholar
  260. 6069.
    Tatuzawa, T.: On the product of L(1,χ). Nagoya Math. J. 5, 105–111 (1953) MathSciNetMATHGoogle Scholar
  261. 6089.
    Taylor, R., Wiles, A.: Ring theoretic properties of certain Hecke algebras. Ann. Math. 141, 553–572 (1995) MathSciNetMATHGoogle Scholar
  262. 6119.
    Terjanian, G.: Sur l’équation x 2p+y 2p=z 2p. C. R. Acad. Sci. Paris 285, 973–975 (1977) MathSciNetMATHGoogle Scholar
  263. 6190.
    Tolstikov, A.V.: A remark on Fermat’s last theorem. Zap. Nauč. Semin. LOMI 67, 223–224 (1977) (in Russian) MathSciNetMATHGoogle Scholar
  264. 6222.
    Turán, P.: A note on Fermat’s conjecture. J. Indian Math. Soc. 15, 47–50 (1951) [[6227], vol. 1, pp. 569–572] MathSciNetMATHGoogle Scholar
  265. 6234.
    Turnbull, H.W.: On certain modular determinants. Edinb. Math. Notes 32, 23–30 (1941) MathSciNetMATHGoogle Scholar
  266. 6245.
    Uchida, K.: Class numbers of imaginary abelian number fields, I. Tohoku Math. J. 23, 97–104 (1971) MathSciNetMATHGoogle Scholar
  267. 6246.
    Uchida, K.: Class numbers of imaginary abelian number fields, II. Tohoku Math. J. 23, 335–348 (1971) MathSciNetMATHGoogle Scholar
  268. 6247.
    Uchida, K.: Class numbers of imaginary abelian number fields, III. Tohoku Math. J. 23, 573–580 (1971) MathSciNetMATHGoogle Scholar
  269. 6303.
    van der Poorten, A.J.: Notes on Fermat’s Last Theorem. Wiley, New York (1996) MATHGoogle Scholar
  270. 6312.
    Vandiver, H.S.: Extensions of the criteria of Wieferich and Mirimanoff in connection with Fermat’s last theorem. J. Reine Angew. Math. 144, 314–317 (1914) Google Scholar
  271. 6313.
    Vandiver, H.S.: A property of cyclotomic integers and its relation to Fermat’s last theorem, I. Ann. Math. 21, 73–80 (1919/1920) MathSciNetGoogle Scholar
  272. 6314.
    Vandiver, H.S.: A property of cyclotomic integers and its relation to Fermat’s last theorem, II. Ann. Math. 26, 217–232 (1925) MathSciNetMATHGoogle Scholar
  273. 6315.
    Vandiver, H.S.: On Kummer’s memoir of 1857, concerning Fermat’s last theorem. Proc. Natl. Acad. Sci. USA 6, 266–269 (1920) Google Scholar
  274. 6316.
    Vandiver, H.S.: On the class number of the field \(\varOmega(e^{2i\pi/p^{n}})\) and the second case of Fermat’s last theorem. Proc. Natl. Acad. Sci. USA 6, 416–421 (1920) Google Scholar
  275. 6317.
    Vandiver, H.S.: On Kummer’s memoir of 1857, concerning Fermat’s last theorem. Bull. Am. Math. Soc. 28, 400–407 (1922) MathSciNetMATHGoogle Scholar
  276. 6318.
    Vandiver, H.S.: A new type of criteria for the first case of Fermat’s last theorem. Ann. Math. 26, 88–94 (1924) MathSciNetMATHGoogle Scholar
  277. 6320.
    Vandiver, H.S.: Note on trinomial congruences and the first case of Fermat’s last theorem. Ann. Math. 27, 54–56 (1925) MathSciNetMATHGoogle Scholar
  278. 6321.
    Vandiver, H.S.: On Fermat’s last theorem. Trans. Am. Math. Soc. 31, 613–642 (1929) MathSciNetGoogle Scholar
  279. 6322.
    Vandiver, H.S.: Summary of results and proofs on Fermat’s last theorem, V. Proc. Natl. Acad. Sci. USA 16, 298–304 (1930) MATHGoogle Scholar
  280. 6323.
    Vandiver, H.S.: Summary of results and proofs on Fermat’s last theorem, VI. Proc. Natl. Acad. Sci. USA 17, 661–673 (1931) Google Scholar
  281. 6324.
    Vandiver, H.S.: On the method of infinite descent in connection with Fermat’s Last Theorem. Comment. Math. Helv. 4, 1–8 (1932) MathSciNetGoogle Scholar
  282. 6325.
    Vandiver, H.S.: On Bernoulli’s numbers and Fermat’s last theorem. Duke Math. J. 3, 569–584 (1937) MathSciNetGoogle Scholar
  283. 6326.
    Vandiver, H.S.: On Bernoulli’s numbers and Fermat’s last theorem, II. Duke Math. J. 5, 418–427 (1939) MathSciNetGoogle Scholar
  284. 6327.
    Vandiver, H.S.: Note on Euler number criteria for the first case of Fermat’s last theorem. Am. J. Math. 62, 79–82 (1940) MathSciNetGoogle Scholar
  285. 6329.
    Vandiver, H.S.: Fermat’s last theorem. Am. Math. Mon. 53, 555–578 (1946); suppl. 60, 164–167 (1953) MathSciNetMATHGoogle Scholar
  286. 6330.
    Vandiver, H.S.: Les travaux mathématiques de Dmitry Mirimanoff. Enseign. Math. 39, 169–179 (1942/1950) MathSciNetGoogle Scholar
  287. 6331.
    Vandiver, H.S.: Examination of methods of attack on the second case of Fermat’s last theorem. Proc. Natl. Acad. Sci. USA 40, 732–735 (1954) MathSciNetMATHGoogle Scholar
  288. 6332.
    Vandiver, H.S.: Is there an infinity of regular primes? Scr. Math. 21, 306–309 (1955) MathSciNetGoogle Scholar
  289. 6378.
    Velmin, V.P.: Solution of the indeterminate equation u m+v n=w k. Mat. Sb. 24, 633–661 (1904) (in Russian) Google Scholar
  290. 6379.
    Vélu, J.: Courbes modulaires et courbes de Fermat. Sém. Théor. Nombres Bordeaux, 1975/1976, exp. 16, 1–10 Google Scholar
  291. 6453.
    Vojta, P.: Siegel’s theorem in the compact case. Ann. Math. 133, 509–548 (1991) MathSciNetMATHGoogle Scholar
  292. 6454.
    Vojta, P.: A generalization of theorems of Faltings and Thue-Siegel-Roth-Wirsing. J. Am. Math. Soc. 5, 763–804 (1992) MathSciNetMATHGoogle Scholar
  293. 6487.
    Wada, H.: Some computations on the criteria of Kummer. Tokyo J. Math. 3, 173–176 (1980) MathSciNetMATHGoogle Scholar
  294. 6489.
    Wagstaff, S.S. Jr.: The irregular primes to 125 000. Math. Comput. 32, 583–591 (1978) MathSciNetMATHGoogle Scholar
  295. 6569.
    Washington, L.C.: On Fermat’s last theorem. J. Reine Angew. Math. 289, 115–117 (1977) MathSciNetMATHGoogle Scholar
  296. 6620.
    Weil, A.: Jacobi sums as “Grössencharaktere”. Trans. Am. Math. Soc. 73, 487–495 (1952) [[6631], vol. 2, pp. 63–71] MathSciNetMATHGoogle Scholar
  297. 6627.
    Weil, A.: Über die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen. Math. Ann. 168, 149–156 (1967) [[6631], vol. 3, pp. 165–172] MathSciNetMATHGoogle Scholar
  298. 6657.
    Wieferich, A.: Zum letzten Fermatschen Theorem. J. Reine Angew. Math. 136, 293–302 (1909) MATHGoogle Scholar
  299. 6670.
    Wiles, A.: Modular elliptic curves and Fermat’s Last Theorem. Ann. Math. 141, 443–551 (1995) MathSciNetMATHGoogle Scholar
  300. 6687.
    Wiman, A.: Über rationale Punkte auf Kurven y 2=x(x 2c 2). Acta Math. 77, 281–320 (1945) MathSciNetMATHGoogle Scholar
  301. 6689.
    Wintenberger, J.-P.: La conjecture de modularité de Serre: le cas de conducteur 1 (d’aprés C. Khare). Astérisque 311, 99–121 (2007) MathSciNetGoogle Scholar
  302. 6774.
    Yamamura, K.: The determination of the imaginary abelian number fields with class number one. Proc. Jpn. Acad. Sci. 68, 21–24 (1992) MathSciNetMATHGoogle Scholar
  303. 6775.
    Yamamura, K.: The determination of the imaginary abelian number fields with class number one. Math. Comput. 62, 899–921 (1994) MathSciNetMATHGoogle Scholar
  304. 6837.
    Zu dem Preisausschreiben der Kgl. Gesellschaft der Wissenschaften zu Göttingen für den Beweis des Fermatschen Satzes. Math. Ann. 66, 7 (1909) Google Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  1. 1.Institute of MathematicsWrocław UniversityWrocławPoland

Personalised recommendations