Advertisement

Dynamic Systems Identification

  • Karel J. Keesman
Part of the Advanced Textbooks in Control and Signal Processing book series (C&SP)

Abstract

Chapter 6 focuses on the identification of dynamic systems, both linear and nonlinear. The selected model structure of linear dynamic systems and, in particular, the structure of the noise model appear to be of crucial importance for specific applications and the estimation methods to be used. In this chapter, it is stressed that both the linear and nonlinear model structures can be formulated in terms of (nonlinear) regression equations, which allow a unification of estimation problems. Special attention is paid to subspace identification for the direct estimation of the entries of the matrices A, B, C, and D in a discrete-time, linear state-space model formulation, to the identification of discrete-time linear parameter-varying models of nonlinear or time-varying systems, to the use of orthogonal basis functions for efficient calculation, and to closed-loop identification in LTI control system configurations.

Keywords

Prediction Error Output Error Infinite Impulse Response Hankel Matrix Interpretable Model Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [AH01]
    H. Akcay, P.S.C. Heuberger, Frequency-domain iterative identification algorithm using general orthonormal basis functions. Automatica 37(5), 663–674 (2001) MathSciNetMATHGoogle Scholar
  2. [Aka74]
    H. Akaike, A new look at statistical model identification. IEEE Trans. Autom. Control AC-19, 716–723 (1974) MathSciNetCrossRefGoogle Scholar
  3. [Akc00]
    H. Akcay, Continuous-time stable and unstable system modelling with orthonormal basis functions. Int. J. Robust Nonlinear Control 10(6), 513–531 (2000) MathSciNetMATHCrossRefGoogle Scholar
  4. [AN99]
    H. Akcay, B. Ninness, Orthonormal basis functions for modelling continuous-time systems. Signal Process. 77(3), 216–274 (1999) MathSciNetCrossRefGoogle Scholar
  5. [BA02]
    K.P. Burnham, D.R. Anderson, Model Selection and Multimodel Inference: A Practical Information-theoretic Approach, 2nd edn. (Springer, Berlin, 2002) MATHGoogle Scholar
  6. [Bag75]
    A. Bagchi, Continuous time systems identification with unknown noise covariance. Automatica 11(5), 533–536 (1975) MathSciNetMATHCrossRefGoogle Scholar
  7. [Bai02]
    E.-W. Bai, A blind approach to the Hammerstein–Wiener model identification. Automatica 38(6), 967–979 (2002) MathSciNetMATHCrossRefGoogle Scholar
  8. [Bai03b]
    E.-W. Bai, Frequency domain identification of Wiener models. Automatica 39(9), 1521–1530 (2003) MathSciNetMATHCrossRefGoogle Scholar
  9. [BBF87]
    G. Belforte, B. Bona, S. Fredani, Optimal sampling schedule for parameter estimation of linear models with unknown but bounded measurement errors. IEEE Trans. Autom. Control AC–32(2), 179–182 (1987) CrossRefGoogle Scholar
  10. [BG02]
    B. Bamieh, L. Giarre, Identification of linear parameter varying models. Int. J. Robust Nonlinear Control 12(9), 841–853 (2002) MathSciNetMATHCrossRefGoogle Scholar
  11. [BM74]
    G.E.P. Box, J.F. MacGregor, Analysis of closed-loop dynamic-stochastic systems. Technometrics 16(3), 391–398 (1974) MathSciNetMATHCrossRefGoogle Scholar
  12. [BRJ09]
    E.-W. Bai, J. Reyland Jr., Towards identification of Wiener systems with the least amount of a priori information: IIR cases. Automatica 45(4), 956–964 (2009) MathSciNetMATHCrossRefGoogle Scholar
  13. [CSS08]
    M.C. Campi, T. Sugie, F. Sakai, An iterative identification method for linear continuous-time systems. IEEE Trans. Autom. Control 53(7), 1661–1669 (2008) MathSciNetCrossRefGoogle Scholar
  14. [DA96]
    S. Dasgupta, B.D.O. Anderson, A parametrization for the closed-loop identification of nonlinear time-varying systems. Automatica 32(10), 1349–1360 (1996) MathSciNetMATHCrossRefGoogle Scholar
  15. [DI82]
    J.J. DiStefano III, Algorithms, software and sequential optimal sampling schedule designs for pharmacokinetic and physiologic experiments. Math. Comput. Simul. 24(6), 531–534 (1982) MathSciNetCrossRefGoogle Scholar
  16. [DK09]
    T.G. Doeswijk, K.J. Keesman, Linear parameter estimation of rational biokinetic functions. Water Res. 43(1), 107–116 (2009) CrossRefGoogle Scholar
  17. [dVvdH98]
    D.K. de Vries, P.M.J. van den Hof, Frequency domain identification with generalized orthonormal basis functions. IEEE Trans. Autom. Control 43(5), 656–669 (1998) MATHCrossRefGoogle Scholar
  18. [DW95]
    L. Desbat, A. Wernsdorfer, Direct algebraic reconstruction and optimal sampling in vector field tomography. IEEE Trans. Signal Process. 43(8), 1798–1808 (1995) CrossRefGoogle Scholar
  19. [EMT00]
    A. Esmaili, J.F. MacGregor, P.A. Taylor, Direct and two-step methods for closed-loop identification: A comparison of asymptotic and finite data set performance. J. Process Control 10(6), 525–537 (2000) CrossRefGoogle Scholar
  20. [FL99]
    U. Forssell, L. Ljung, Closed-loop identification revisited. Automatica 35(7), 1215–1241 (1999) MathSciNetMATHCrossRefGoogle Scholar
  21. [GL09b]
    J. Gillberg, L. Ljung, Frequency-domain identification of continuous-time ARMA models from sampled data. Automatica 45(6), 1371–1378 (2009) MATHCrossRefGoogle Scholar
  22. [GRC09]
    F. Giri, Y. Rochdi, F.-Z. Chaoui, An analytic geometry approach to Wiener system frequency identification. IEEE Trans. Autom. Control 54(4), 683–696 (2009) MathSciNetCrossRefGoogle Scholar
  23. [Gre94]
    W. Greblicki, Nonparametric identification of Wiener systems by orthogonal series. IEEE Trans. Autom. Control 39(10), 2077–2086 (1994) MathSciNetMATHCrossRefGoogle Scholar
  24. [Gre98]
    W. Greblicki, Continuous-time Wiener system identification. IEEE Trans. Autom. Control 43(10), 1488–1493 (1998) MathSciNetMATHCrossRefGoogle Scholar
  25. [Gre00]
    W. Greblicki, Continuous-time Hammerstein system identification. IEEE Trans. Autom. Control 45(6), 1232–1236 (2000) MathSciNetMATHCrossRefGoogle Scholar
  26. [GvdH01]
    M. Gilson, P. van den Hof, On the relation between a bias-eliminated least-squares (BELS) and an IV estimator in closed-loop identification. Automatica 37(10), 1593–1600 (2001) MATHCrossRefGoogle Scholar
  27. [HdHvdHW04]
    P.S.C. Heuberger, T.J. de Hoog, P.M.J. van den Hof, B. Wahlberg, Orthonormal basis functions in time and frequency domain: Hambo transform theory. SIAM J. Control Optim. 42(4), 1347–1373 (2004) CrossRefGoogle Scholar
  28. [HGDB96]
    H. Hjalmarsson, M. Gevers, F. De Bruyne, For model-based control design, closed-loop identification gives better performance. Automatica 32(12), 1659–1673 (1996) MathSciNetMATHCrossRefGoogle Scholar
  29. [KD09]
    K.J. Keesman, T.G. Doeswijk, Direct least-squares estimation and prediction of rational systems: application to food storage. J. Process Control 19, 340–348 (2009) MATHCrossRefGoogle Scholar
  30. [KK09]
    K.J. Keesman, N. Khairudin, Linear regressive realizations of LTI state space models, in Proceedings of the 15th IFAC Symposium on System Identification, St. Malo, France (2009), pp. 1868–1873 Google Scholar
  31. [Lju87]
    L. Ljung, System Identification—Theory for the User (Prentice Hall, New York, 1987) MATHGoogle Scholar
  32. [Lju99b]
    L. Ljung, System Identification—Theory for the User, 2nd edn. (Prentice Hall, New York, 1999) Google Scholar
  33. [LKvS96]
    L.J.S. Lukasse, K.J. Keesman, G. van Straten, Grey-box identification of dissolved oxygen dynamics in an activated sludge process, in Proceedings of the 13th IFAC World Congress, San Francisco, USA, vol. N (1996), pp. 485–490 Google Scholar
  34. [LP96]
    L.H. Lee, K. Poolla, Identification of linear parameter-varying systems via LFTs, in Proceedings of the IEEE Conference on Decision and Control, vol. 2 (1996), pp. 1545–1550 Google Scholar
  35. [LP99]
    L.H. Lee, K. Poolla, Identification of linear parameter-varying systems using nonlinear programming. J. Dyn. Syst. Meas. Control, Trans. ASME 121(1), 71–78 (1999) CrossRefGoogle Scholar
  36. [MF95]
    J.F. MacGregor, D.T. Fogal, Closed-loop identification: the role of the noise model and prefilters. J. Process Control 5(3), 163–171 (1995) CrossRefGoogle Scholar
  37. [Nor86]
    J.P. Norton, An Introduction to Identification (Academic Press, San Diego, 1986) MATHGoogle Scholar
  38. [Paw91]
    M. Pawlak, On the series expansion approach to the identification of Hammerstein systems. IEEE Trans. Autom. Control 36(6), 763–767 (1991) MathSciNetCrossRefGoogle Scholar
  39. [Phi73]
    P.C.B. Phillips, The problem of identification in finite parameter continuous time models. J. Econom. 1(4), 351–362 (1973) MATHCrossRefGoogle Scholar
  40. [Sak61]
    M. Sakaguchi, Dynamic programming of some sequential sampling design. J. Math. Anal. Appl. 2(3), 446–466 (1961) MathSciNetMATHCrossRefGoogle Scholar
  41. [SR77]
    M.W.A. Smith, A.P. Roberts, A study in continuous time of the identification of initial conditions and/or parameters of deterministic system by means of a Kalman-type filter. Math. Comput. Simul. 19(3), 217–226 (1977) MathSciNetMATHCrossRefGoogle Scholar
  42. [SR79]
    M.W.A. Smith, A.P. Roberts, The relationship between a continuous-time identification algorithm based on the deterministic filter and least-squares methods. Inf. Sci. 19(2), 135–154 (1979) MathSciNetMATHCrossRefGoogle Scholar
  43. [THvdH09]
    R. Tóth, P.S.C. Heuberger, P.M.J. van den Hof, Asymptotically optimal orthonormal basis functions for LPV system identification. Automatica 45(6), 1359–1370 (2009) MATHCrossRefGoogle Scholar
  44. [TK75]
    H. Thoem, V. Krebs, Closed loop identification—correlation analysis or parameter estimation [Identifizierung im geschlossenen Regelkreis – Korrelationsanalyse oder Parameterschaetzung?]. Regelungstechnik 23(1), 17–19 (1975) Google Scholar
  45. [TV72]
    R. Tomovic, M. Vukobratovic, General Sensitivity Theory (American Elsevier, New York, 1972) MATHGoogle Scholar
  46. [VD92]
    M. Verhaegen, P. Dewilde, Subspace model identification. Part 1: The output-error state-space model identification class of algorithms. Int. J. Control 56, 1187–1210 (1992) MathSciNetMATHCrossRefGoogle Scholar
  47. [vdHPB95]
    P.M.J. van den Hof, P.S.C. Heuberger, J. Bokor, System identification with generalized orthonormal basis functions. Automatica 31(12), 1821–1834 (1995) MathSciNetMATHCrossRefGoogle Scholar
  48. [VH05]
    I. Vajk, J. Hetthéssy, Subspace identification methods: review and re-interpretation, in Proceedings of the 5th International Conference on Control and Automation, ICCA’05 (2005), pp. 113–118 CrossRefGoogle Scholar
  49. [Vib95]
    M. Viberg, Subspace-based methods for the identification of linear time-invariant systems. Automatica 31(12), 1835–1851 (1995) MathSciNetMATHCrossRefGoogle Scholar
  50. [VKZ06]
    D. Vries, K.J. Keesman, H. Zwart, Explicit linear regressive model structures for estimation, prediction and experimental design in compartmental diffusive systems, in Proceedings of the 14th IFAC Symposium on System Identification, Newcastle, Australia (2006), pp. 404–409 Google Scholar
  51. [vOdM95]
    P. van Overschee, B. de Moor, Choice of state-space basis in combined deterministic-stochastic subspace identification. Automatica 31(12), 1877–1883 (1995) MathSciNetMATHCrossRefGoogle Scholar
  52. [Vri08]
    D. Vries, Estimation and prediction of convection-diffusion-reaction systems from point measurements. Ph.D. thesis, Systems & Control, Wageningen University (2008) Google Scholar
  53. [VS04]
    J.H. Van Schuppen, System theory for system identification. J. Econom. 118(1–2), 313–339 (2004) MATHGoogle Scholar
  54. [VV02]
    V. Verdult, M. Verhaegen, Subspace identification of multivariable linear parameter-varying systems. Automatica 38(5), 805–814 (2002) MathSciNetMATHCrossRefGoogle Scholar
  55. [Wig93]
    T. Wigren, Recursive prediction error identification using the nonlinear Wiener model. Automatica 29(4), 1011–1025 (1993) MathSciNetMATHCrossRefGoogle Scholar
  56. [WZL09]
    J. Wang, Q. Zhang, L. Ljung, Revisiting Hammerstein system identification through the two-stage algorithm for bilinear parameter estimation. Automatica 45(11), 2627–2633 (2009) MATHCrossRefGoogle Scholar
  57. [Zhu05]
    Q.M. Zhu, An implicit least squares algorithm for nonlinear rational model parameter estimation. Appl. Math. Model. 29(7), 673–689 (2005) MATHCrossRefGoogle Scholar
  58. [ZWR91]
    A. Zakhor, R. Weisskoff, R. Rzedzian, Optimal sampling and reconstruction of MRI signals resulting from sinusoidal gradients. IEEE Trans. Signal Process. 39(9), 2056–2065 (1991) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Systems and Control GroupWageningen UniversityWageningenNetherlands

Personalised recommendations