Frequency Response Methods

  • Karel J. Keesman
Part of the Advanced Textbooks in Control and Signal Processing book series (C&SP)


Chapter 3 describes, for LTI systems, data-based or nonparametric identification methods that directly provide estimates of the impulse response function g(t) in the frequency domain, G(e ). In particular, the empirical transfer-function estimate (ETFE) and the critical point identification method are introduced. The frequency domain descriptions, given an estimate of the frequency function G(e ), are particularly suited for classical and robust controller design.


Discrete Fourier Transform Frequency Function Delta Operator Nyquist Curve Describe Function Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [ÅH84]
    K.J. Åström, T. Hagglund, Automatic tuning of simple regulators with specifications on phase and amplitude margins. Automatica 20, 645–651 (1984) MATHCrossRefGoogle Scholar
  2. [ÅH88]
    K.J. Åström, T. Hagglund, Automatic tuning of PID controllers (Instrument Society of America, 1988) Google Scholar
  3. [BMS+04]
    T.Z. Bilau, T. Megyeri, A. Sárhegyi, J. Márkus, I. Kollár, Four-parameter fitting of sine wave testing result: Iteration and convergence. Comput. Stand. Interfaces 26(1), 51–56 (2004) CrossRefGoogle Scholar
  4. [Fre80]
    P. Freymuth, Sine-wave testing of non-cylindrical hot-film anemometers according to the Bellhouse-Schultz model. J. Phys. E, Sci. Instrum. 13(1), 98–102 (1980) CrossRefGoogle Scholar
  5. [Har91]
    N. Haritos, Swept sine wave testing of compliant bottom-pivoted cylinders, in Proceedings of the First International Offshore and Polar Engineering Conference (1991), pp. 378–383 Google Scholar
  6. [JM05]
    M.A. Johnson, M.H. Moradi, PID Control: New Identification and Design Methods (Springer, London, 2005) Google Scholar
  7. [LG09]
    T. Liu, F. Gao, A generalized relay identification method for time delay and non-minimum phase processes. Automatica 45(4), 1072–1079 (2009) MathSciNetMATHCrossRefGoogle Scholar
  8. [MCS08]
    J. Mertl, M. Cech, M. Schlegel, One point relay identification experiment based on constant-phase filter, in 8th International Scientific Technical Conference PROCESS CONTROL 2008, Kouty nad Desnou, Czech Republic, vol. C037 (2008), pp. 1–9 Google Scholar
  9. [MG86]
    R.H. Middleton, G.C. Goodwin, Improved finite word length characteristics in digital control using delta operators. IEEE Trans. Autom. Control AC–31(11), 1015–1021 (1986) CrossRefGoogle Scholar
  10. [MG90]
    R.H. Middleton, G.C. Goodwin, Digital Control and Estimation: A Unified Approach. (Prentice Hall, New York, 1990) Google Scholar
  11. [Rak80]
    H. Rake, Step response and frequency-response methods. Automatica 16(5), 519–526 (1980) MATHCrossRefGoogle Scholar
  12. [TLH+06]
    K.K. Tan, T.H. Lee, S. Huang, K.Y. Chua, R. Ferdous, Improved critical point estimation using a preload relay. J. Process Control 16(5), 445–455 (2006) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Systems and Control GroupWageningen UniversityWageningenNetherlands

Personalised recommendations