System Response Methods

  • Karel J. Keesman
Part of the Advanced Textbooks in Control and Signal Processing book series (C&SP)


In Chap. 2 the focus is on data-based or nonparametric identification methods that directly utilize specific responses of a linear, time-invariant (LTI) system, in particular the impulse, step, and sine-wave response. The first two signals directly provide estimates of the impulse response function g(t), while the sine-wave response forms the basis for the frequency domain methods described in Chap.  3.


Impulse Response Discrete Fourier Transform Step Response Impulse Response Function Response Identification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [DDk05]
    H. Deng, M. Doroslovački, Improving convergence of the pnlms algorithm for sparse impulse response identification. IEEE Signal Process. Lett. 12(3), 181–184 (2005) CrossRefGoogle Scholar
  2. [FBT96]
    B. Farhang-Boroujeny, T.-T. Tay, Transfer function identification with filtering techniques. IEEE Trans. Signal Process. 44(6), 1334–1345 (1996) CrossRefGoogle Scholar
  3. [GCH98]
    S. Grob, P.D.J. Clark, K. Hughes, Enhanced channel impulse response identification for the itu hf measurement campaign. Electron. Lett. 34(10), 1022–1023 (1998) CrossRefGoogle Scholar
  4. [GGS01]
    G.C. Goodwin, S.F. Graebe, M.E. Salgado, Control System Design (Prentice Hall, New York, 2001) Google Scholar
  5. [JR04]
    R. Johansson, A. Robertsson, On behavioral model identification. Signal Process. 84(7), 1089–1100 (2004) MATHCrossRefGoogle Scholar
  6. [JVCR98]
    R. Johansson, M. Verhaegen, C.T. Chou, A. Robertsson, Behavioral Model Identification, in Proceedings of the IEEE Conference on Decision and Control, 1998, pp. 126–131 Google Scholar
  7. [MR97]
    C. Maffezzoni, P. Rocco, Robust tuning of PID regulators based on step-response identification. Eur. J. Control 3(2), 125–136 (1997) MATHGoogle Scholar
  8. [Nor86]
    J.P. Norton, An Introduction to Identification (Academic Press, San Diego, 1986) MATHGoogle Scholar
  9. [PW98]
    J.W. Polderman, J.C. Willems, Introduction to Mathematical Systems Theory: A Behavioral Approach (Springer, Berlin, 1998) Google Scholar
  10. [Rak80]
    H. Rake, Step response and frequency-response methods. Automatica 16(5), 519–526 (1980) MATHCrossRefGoogle Scholar
  11. [SC97]
    G. Sparacino, C. Cobelli, Impulse response model in reconstruction of insulin secretion by deconvolution: role of input design in the identification experiment. Ann. Biomed. Eng. 25(2), 398–416 (1997) CrossRefGoogle Scholar
  12. [SL03]
    S.W. Sung, J.H. Lee, Pseudo-random binary sequence design for finite impulse response identification. Control Eng. Pract. 11(8), 935–947 (2003) CrossRefGoogle Scholar
  13. [TOS98]
    M. Takahashi, H. Ohmori, A. Sano, Impulse response identification by use of wavelet packets decomposition, in Proceedings of the IEEE Conference on Decision and Control, vol. 1 (1998), pp. 211–214 Google Scholar
  14. [WC97]
    L. Wang, W.R. Cluett, Frequency-sampling filters: an improved model structure for step-response identification. Automatica 33(5), 939–944 (1997) MathSciNetMATHCrossRefGoogle Scholar
  15. [Wel81]
    P.E. Wellstead, Non-parametric methods of system identification. Automatica 17, 55–69 (1981) MATHCrossRefGoogle Scholar
  16. [Wil86a]
    J.C. Willems, From time series to linear system. Part I. Finite dimensional linear time invariant systems. Automatica 22, 561–580 (1986) MathSciNetMATHCrossRefGoogle Scholar
  17. [Wil86b]
    J.C. Willems, From time series to linear system. Part II. Exact modelling. Automatica 22, 675–694 (1986) MathSciNetMATHCrossRefGoogle Scholar
  18. [Wil87]
    J.C. Willems, From time series to linear system. Part III. Approximate modelling. Automatica 23, 87–115 (1987) MathSciNetMATHCrossRefGoogle Scholar
  19. [YST97]
    Z.-J. Yang, S. Sagara, T. Tsuji, System impulse response identification using a multiresolution neural network. Automatica 33(7), 1345–1350 (1997) MathSciNetMATHCrossRefGoogle Scholar
  20. [Zwa04]
    H.J. Zwart, Transfer functions for infinite-dimensional systems. Syst. Control Lett. 52(3–4), 247–255 (2004) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Systems and Control GroupWageningen UniversityWageningenNetherlands

Personalised recommendations