Introduction to Control Systems

  • Iasson Karafyllis
  • Zhong-Ping Jiang
Part of the Communications and Control Engineering book series (CCE)


This introductory chapter begins with important classes of control systems that will be studied in greater details in subsequent chapters. Basic notions and preliminary results in mathematical system and control theories are presented. Practical examples arising from engineering, mathematical biology and economics are introduced and will be invoked in subsequent chapters.


Equilibrium Point Functional Differential Equation Normed Linear Space Symmetric Positive Definite Matrix Semigroup Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Agiza, H.N., Bischi, G.I., Kopel, M.: Multistability in a dynamic Cournot game with three oligopolists. Mathematics and Computers in Simulation 51, 63–90 (1999) MathSciNetCrossRefGoogle Scholar
  2. 2.
    Athanasiou, G., Karafyllis, I., Kotsios, S.: Price stabilization using buffer stocks. Journal of Economic Dynamics and Control 32(4), 1212–1235 (2008) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Bellman, R.E., Cooke, K.L.: Differential-Difference Equations. Academic Press, New York (1963) MATHGoogle Scholar
  4. 4.
    Bischi, G., Kopel, M.: Equilibrium selection in a nonlinear duopoly game with adaptive expectations. Journal of Economic Behavior & Organization 46, 73–100 (2001) CrossRefGoogle Scholar
  5. 5.
    Burns, J.A., Herdman, T.L., Stech, H.W.: Linear functional differential equations as semigroups on product spaces. SIAM Journal of Mathematical Analysis 14, 96–116 (1983) MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chiarella, C., Szidarovszky, F.: Dynamic oligopolies without full information and with continuously distributed time lags. Journal of Economic Behavior & Organization 54, 495–511 (2004) CrossRefGoogle Scholar
  7. 7.
    Clarke, F.H., Ledyaev, Y.S., Sontag, E.D., Subbotin, A.I.: Asymptotic controllability implies feedback stabilization. IEEE Transactions on Automatic Control 42(10), 1394–1407 (1997) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Coron, J.-M.: Control and Nonlinearity. Mathematical Surveys and Monographs, vol. 136. American Mathematical Society, Providence (2007) MATHGoogle Scholar
  9. 9.
    Desoer, C.A., Vidyasagar, M.: Feedback Systems: Input-Output Properties. Academic Press, New York (1975) MATHGoogle Scholar
  10. 10.
    Droste, E., Hommes, C., Tuinstra, J.: Endogenous fluctuations under evolutionary pressure in Cournot competition. Games and Economic Behavior 40, 232–269 (2002) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Fillipov, A.V.: Differential Equations with Discontinuous Right-Hand Sides. Kluwer Academic, Dordrecht (1988) Google Scholar
  12. 12.
    Forgo, F., Szep, J., Szidarovszky, F.: Introduction to the Theory of Games: Concepts, Methods, Applications. Kluwer Academic, Amsterdam (1999) MATHGoogle Scholar
  13. 13.
    Grüne, L.: Stabilization by sampled and discrete feedback with positive sampling rate. In: Aeyels, D., Lamnabhi-Lagarrigue, F., van der Schaft, A. (eds.) Stability and Stabilization of Nonlinear Systems, pp. 165–182. Springer, London (1999) CrossRefGoogle Scholar
  14. 14.
    Hale, J.K., Lunel, S.M.V.: Introduction to Functional Differential Equations. Springer, New York (1993) MATHGoogle Scholar
  15. 15.
    Hale, J.K., Lunel, S.M.V.: Strong stabilization of neutral functional differential equations. IMA Journal of Mathematical Control and Information 19, 5–23 (2002) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Hale, J.K., Lunel, S.M.V.: Stability and control of feedback systems with time delays. International Journal of Systems Science, 34(8–9), 497–504 (2003) MATHCrossRefGoogle Scholar
  17. 17.
    Henry, D.: Linear autonomous neutral functional differential equations. Journal of Differential Equations 15, 106–128 (1974) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Jiang, Z.P., Wang, Y.: Input-to-state stability for discrete-time nonlinear systems. Automatica 37(6), 857–869 (2001) MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Jiang, Z.P., Wang, Y.: A converse Lyapunov theorem for discrete-time systems with disturbances. Systems and Control Letters 45, 49–58 (2002) MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Jiang, Z.P., Teel, A., Praly, L.: Small-gain theorems for ISS systems and applications. Mathematics of Control, Signals, and Systems 7, 95–120 (1994) MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Kalman, R.E.: Mathematical description of linear dynamical systems. J. SIAM Control 1(2), 152–192 (1963) MathSciNetMATHGoogle Scholar
  22. 22.
    Karafyllis, I.: The non-uniform in time small-gain theorem for a wide class of control systems with outputs. European Journal of Control 10(4), 307–323 (2004) MathSciNetCrossRefGoogle Scholar
  23. 23.
    Karafyllis, I.: Non-uniform robust global asymptotic stability for discrete-time systems and applications to numerical analysis. IMA Journal of Mathematical Control and Information 23(1), 11–41 (2006) MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Karafyllis, I.: Non-uniform in time robust global asymptotic output stability for discrete-time systems. International Journal of Robust and Nonlinear Control 16(4), 191–214 (2006) MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Karafyllis, I.: Stabilization by means of time-varying hybrid feedback. Mathematics of Control, Signals and Systems 18(3), 236–259 (2006) MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Karafyllis, I.: A system-theoretic framework for a wide class of systems I: Applications to numerical analysis. Journal of Mathematical Analysis and Applications 328(2), 876–889 (2007) MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Karafyllis, I.: A system-theoretic framework for a wide class of systems II: Input-to-output stability. Journal of Mathematical Analysis and Applications 328(1), 466–486 (2007) MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Karafyllis, I., Jiang, Z.-P., Athanasiou, G.: Nash equilibrium and robust stability in dynamic games: A small-gain perspective. Computers and Mathematics with Applications 60, 2936–2952 (2010) MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Karafyllis, I., Jiang, Z.-P.: New results in trajectory-based small-gain with application to the stabilization of a chemostat. Submitted to International Journal of Robust Nonlinear Control Google Scholar
  30. 30.
    Karafyllis, I., Grüne, L.: Feedback stabilization methods for the numerical solution of systems of ordinary differential equations. To appear in Discrete and Continuous Dynamical Systems, Series B Google Scholar
  31. 31.
    Karafyllis, I., Pepe, P., Jiang, Z.-P.: Stability results for systems described by coupled retarded functional differential equations and functional difference equations. Nonlinear Analysis, Theory, Methods and Applications 71(7–8), 3339–3362 (2009) MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Lakshmikantham, V., Deo, S.G.: Method of Variation of Parameters for Dynamic Systems, vol. 1. Gordon and Breach Science, New Delhi (1998) MATHGoogle Scholar
  33. 33.
    Lakshmikantham, V., Trigiante, D.: Theory of Difference Equations. Numerical Methods and Applications, 2nd edn. Dekker, New York (2002) MATHCrossRefGoogle Scholar
  34. 34.
    Marchand, N., Alamir, M.: Asymptotic controllability implies continuous-discrete time feedback stabilization. In: Nonlinear Control in the Year 2000, vol. 2, pp. 63–79. Springer, Berlin (2000) Google Scholar
  35. 35.
    Niculescu, S.I.: Delay Effects on Stability, a Robust Control Approach. Lecture Notes in Control and Information Sciences. Springer, Heidelberg (2001) Google Scholar
  36. 36.
    Okuguchi, K., Yamazaki, T.: Global stability of unique Nash equilibrium in Cournot oligopoly and rent-seeking game. Journal of Economic Dynamics and Control 32, 1204–1211 (2008) MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Panchuk, A., Puu, T.: Stability in a non-autonomous iterative system: An application to oligopoly. Computers and Mathematics with Applications 58, 2022–2034 (2009) MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Pepe, P.: On the asymptotic stability of coupled delay differential and continuous time difference equations. Automatica 41, 107–112 (2005) MathSciNetMATHGoogle Scholar
  39. 39.
    Pepe, P., Karafyllis, I., Jiang, Z.-P.: On the Liapunov–Krasovskii methodology for the ISS of systems described by coupled delay differential and difference equations. Automatica 44(9), 2266–2273 (2008) MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Petit, N., Rouchon, P.: Dynamics and solutions to some control problems for water-tank systems. IEEE Transactions on Automatic Control 47(4), 594–609 (2002) MathSciNetCrossRefGoogle Scholar
  41. 41.
    Prieur, C., de Halleux, J.: Stabilization of a 1-D tank containing a fluid modeled by the shallow water equations. Systems and Control Letters 52, 167–178 (2004) MathSciNetMATHCrossRefGoogle Scholar
  42. 42.
    Rasvan, V.: Functional differential equations of lossless propagation and almost linear behavior. Plenary Lecture at the 6th IFAC Workshop on Time-Delay Systems. L’Aquila, Italy (2006) Google Scholar
  43. 43.
    Savkin, A.V., Evans, R.J.: Hybrid Dynamical Systems. Birkhäuser, Boston (2002) MATHCrossRefGoogle Scholar
  44. 44.
    Shim, H., Teel, A.R.: Asymptotic controllability and observability imply semiglobal practical asymptotic stabilizability by sampled-data output feedback. Automatica 39, 441–454 (2003) MathSciNetMATHCrossRefGoogle Scholar
  45. 45.
    Smith, H., Waltman, P.: The Theory of the Chemostat. Dynamics of Microbial Competition. Cambridge Studies in Mathematical Biology, vol. 13. Cambridge University Press, Cambridge (1995) MATHCrossRefGoogle Scholar
  46. 46.
    Sontag, E.D.: Mathematical Control Theory, 2nd edn. Springer, New York (1998) MATHGoogle Scholar
  47. 47.
    Sontag, E.D.: Clocks and insensitivity to small measurement errors. ESAIM: Control, Optimisation and Calculus of Variations 4, 537–557 (1999) MathSciNetMATHCrossRefGoogle Scholar
  48. 48.
    Stuart, A.M., Humphries, A.R.: Dynamical Systems and Numerical Analysis. Cambridge University Press, Cambridge (1998) MATHGoogle Scholar
  49. 49.
    Sun, Y., Michel, A.N., Zhai, G.: Stability of discontinuous retarded functional differential equations with applications. IEEE Transactions on Automatic Control 50(8), 1090–1105 (2005) MathSciNetCrossRefGoogle Scholar
  50. 50.
    Zhu, L., Huang, X.: Multiple limit cycles in a continuous culture vessel with variable yield. Nonlinear Analysis 64, 887–894 (2006) MathSciNetMATHCrossRefGoogle Scholar
  51. 51.
    Zhu, L., Huang, X., Su, H.: Bifurcation for a functional yield chemostat when one competitor produces a toxin. Journal of Mathematical Analysis and Applications 329, 871–903 (2007) MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Department of Environmental EngineeringTechnical University of CreteChaniaGreece

Personalised recommendations