Advertisement

Biological Causes of Anterior Knee Pain

  • Vicente Sanchis-Alfonso
  • Esther Roselló-Sastre
  • Juan Saus-Mas
  • Fernando Revert-Ros
Chapter

Abstract

Despite an abundance of clinical and basic science research, anterior knee pain syndrome or patellofemoral pain syndrome (PFPS) remains, according to John Insall, an orthopedic “enigma” (“Black hole of Ortho­pedics”). The numerous treatment regimes that exist for PFPS highlight the lack of knowledge regarding the etiology of the pain. At present, no theory provides a comprehensive explanation of the true nature of this pathologic condition or how to hasten its resolution in a safe and reliable way. This chapter reviews the literature and synthesizes our research on anterior knee pain pathophysiology. This topic is clinically relevant because patient management will be greatly simplified when we understand what the causes are for anterior knee pain in the young patient.

Keywords

Vascular Endothelial Growth Factor Anterior Knee Pain Osteoid Osteoma Patellar Instability Free Nerve Ending 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1.  1.
    Abe T, Morgan DA, Gutterman DD. Protective role of nerve growth factor against postischemic dysfunction of sympathetic coronary innervation. Circulation. 1997;95:213-220.PubMedGoogle Scholar
  2.  2.
    Abraham E, Washington E, Huang TL. Insall proximal realignment for disorders of the patella. Clin Orthop Relat Res. 1989;248:61-65.PubMedGoogle Scholar
  3.  3.
    Ahmed M, Bergstrom J, Lundblad H, et al. Sensory nerves in the interface membrane of aseptic loose hip prostheses. J Bone Joint Surg. 1998;80-B:151-155.CrossRefGoogle Scholar
  4.  4.
    Alfredson H, Ohberg L, Forsgren S. Is vasculo-neural ingrowth the cause of pain in chronic Achilles tendinosis? An investigation using ultrasonography and colour Doppler, immunohistochemistry, and diagnostic injections. Knee Surg Sports Traumatol Arthrosc. 2003;11:334-338.PubMedCrossRefGoogle Scholar
  5.  5.
    Ashton IK, Ashton BA, Gibson SJ, et al. Morphological basis for back pain: the demonstration of nerve fibers and neuropeptides in the lumbar facet joint capsule but not in ligamentum flavum. J Orthop Res. 1992;10:72-78.PubMedCrossRefGoogle Scholar
  6.  6.
    Ashton IK, Roberts S, Jaffray DC. Neuropeptides in the human intervertebral disc. J Orthop Res. 1994;12:186-192.PubMedCrossRefGoogle Scholar
  7.  7.
    Ashton IK, Walsh DA, Polak JM, et al. Substance P in intervertebral discs binding sites vascular endothelium human annulus fibrosus. Acta Orthop Scand. 1994;65:635-639.PubMedCrossRefGoogle Scholar
  8.  8.
    Barton RS, Ostrowski ML, Anderson TD, et al. Intraosseous innervation of the human patella: a histologic study. Am J Sports Med. 2007;35:307-311.PubMedCrossRefGoogle Scholar
  9.  9.
    Berse B, Hunt JA, Diegel RJ, et al. Hypoxia augments cytokine-induced vascular endothelial growth factor secretion by human synovial fibroblasts. Clin Exp Immunol. 1999;115:176-182.PubMedCrossRefGoogle Scholar
  10. 10.
    Biedert RM, Sanchis-Alfonso V. Sources of anterior knee pain. Clin Sports Med. 2002;21:335-347.PubMedCrossRefGoogle Scholar
  11. 11.
    Byers PD. Solitary benign osteoblastic lesions of bone osteoid osteoma benign osteoblastoma. Cancer. 1968;22:43-57.PubMedCrossRefGoogle Scholar
  12. 12.
    Calzà L, Giardino L, Giuliani A, et al. Nerve growth factor control of neuronal expression of angiogenetic and vasoactive factors. Proc Natl Acad Sci USA. 2001;98:4160-4165.PubMedCrossRefGoogle Scholar
  13. 13.
    Coppes MH, Marani E, Thomeer RT, et al. Innervation of “painful” lumbar discs. Spine. 1997;22:2342-2349.PubMedCrossRefGoogle Scholar
  14. 14.
    Dicou E, Pflug B, Magazin M, et al. Two peptides derived from the nerve growth factor precursor are biologically active. J Cell Biol. 1997;136:389-398.PubMedCrossRefGoogle Scholar
  15. 15.
    Dye SF, Staubli HU, Biedert RM, et al. The mosaic of pathophysiology causing patellofemoral pain: therapeutic implications. Oper Tech Sports Med. 1999;7:46-54.CrossRefGoogle Scholar
  16. 16.
    Dye SF, Vaupel GL, Dye CC. Conscious neurosensory ­mapping of the internal structures of the human knee ­without intra-articular anesthesia. Am J Sports Med. 1998;26:773-777.PubMedGoogle Scholar
  17. 17.
    Freemont AJ, Peacock TE, Goupille P, et al. Nerve ingrowth into diseased intervertebral disc in chronic back pain. Lancet. 1997;350:178-181.PubMedCrossRefGoogle Scholar
  18. 18.
    Fulkerson JP. The etiology of patellofemoral pain in young active patients: a prospective study. Clin Orthop Relat Res. 1983;179:129-133.PubMedGoogle Scholar
  19. 19.
    Fulkerson JP, Hungerford DS. Disorders of the Patellofemoral Joint. Baltimore: Williams & Wilkins; 1990.Google Scholar
  20. 20.
    Fulkerson JP, Tennant R, Jaivin JS, et al. Histologic evidence of retinacular nerve injury associated with patellofemoral malalignment. Clin Orthop Relat Res. 1985;197:196-205.PubMedGoogle Scholar
  21. 21.
    Gelfer Y, Pinkas L, Horne T, et al. Symptomatic transient patellar ischemia following total knee replacement as detected by scintigraphy. A prospective, randomized, double-blind study comparing the mid-vastus to the medial para-patellar approach. Knee. 2003;10:341-345.PubMedCrossRefGoogle Scholar
  22. 22.
    Gidal B, Billington R. New and emerging treatment options for neuropathic pain. Am J Manag Care. 2006;12:S269-S278.PubMedGoogle Scholar
  23. 23.
    Gigante A, Bevilacqua C, Ricevuto A, et al. Biological aspects in patello-femoral malalignment. In: Book of Abstracts, 11th Congress European Society of Sports Traumatology, Knee Surgery and Arthroscopy. Athens: Springer; 2004:218.Google Scholar
  24. 24.
    Grelsamer RP, McConnell J. The Patella. A Team Approach. Gaithersburg: An Aspen Publication; 1998.Google Scholar
  25. 25.
    Grönblad M, Korkala O, Konttinen YT, et al. Silver impregnation and immunohistochemical study of nerves in lumbar facet joint plical tissue. Spine. 1991;16:34-38.PubMedCrossRefGoogle Scholar
  26. 26.
    Grönblad M, Weinstein JN, Santavirta S. Immunohisto­chemical observations on spinal tissue innervation. A review of hipothetical mechanisms of back pain. Acta Orthop Scand. 1991;62:614-622.PubMedCrossRefGoogle Scholar
  27. 27.
    Guyton AC, Hall JE. Textbook of Medical Physiology. Philadelphia: WB Saunders Co; 1996.Google Scholar
  28. 28.
    Hasegawa T, Hirose T, Sakamoto R, et al. Mechanism of pain in osteoid osteomas: an immunohistochemical study. Histopathology. 1993;22:487-491.PubMedCrossRefGoogle Scholar
  29. 29.
    Hayashi T, Sakurai M, Abe K, et al. Expression of angiogenic factors in rabbit spinal cord after transient ischaemia. Neuropathol Appl Neurobiol. 1999;25:63-71.PubMedCrossRefGoogle Scholar
  30. 30.
    Isaacson LG, Crutcher KA. The duration of sprouted cerebrovascular axons following intracranial infusion of nerve growth factor. Exp Neurol. 1995;13:174-179.CrossRefGoogle Scholar
  31. 31.
    Jackson JR, Minton JAL, Ho ML, et al. Expression of vascular endothelial growth factor in synovial fibroblasts is induced by hipoxia and interleukin 1ß. J Rheumatol. 1997; 24:1253-1259.PubMedGoogle Scholar
  32. 32.
    Jensen R, Hystad T, Kvale A, et al. Quantitative sensory testing of patients with long lasting patellofemoral pain síndrome. Eur J Pain. 2007;11:665-676.PubMedCrossRefGoogle Scholar
  33. 33.
    Jerosch J, Prymka M. Knee joint propioception in patients with posttraumatic recurrent patella dislocation. Knee Surg Sports Traumatol Arthrosc. 1996;4:14-18.PubMedCrossRefGoogle Scholar
  34. 34.
    Kasim N, Fulkerson JP. Resection of clinically localized segments of painful retinaculum in the treatment of selected patients with anterior knee pain. Am J Sports Med. 2000; 28:811-814.PubMedGoogle Scholar
  35. 35.
    Kawaja MD. Sympathetic and sensory innervation of the extracerebral vasculature: roles for p75NTR neuronal expression and nerve growth factor. J Neurosci Res. 1998;52: 295-306.PubMedCrossRefGoogle Scholar
  36. 36.
    Kocher MS, Fu FH, Harner ChD. Neuropathophysiology. In: Fu FH, Harner ChD, Vince KG, eds. Knee Surgery. Baltimore: Williams and Wilkins; 1994:231-249.Google Scholar
  37. 37.
    Konttinen YT, Grönblad M, Antti-Poika I, et al. Neuro­immunohistochemical analysis of peridiscal nociceptive neural elements. Spine. 1990;15:383-386.PubMedCrossRefGoogle Scholar
  38. 38.
    Korkala O, Grönblad M, Liesi P, et al. Immunohistochemical demonstration of nociceptors in the ligamentous structures of the lumbar spine. Spine. 1985;10:156-157.PubMedCrossRefGoogle Scholar
  39. 39.
    Kraushaar BS, Nirschl RP. Tendinosis of the elbow (tennis elbow). J Bone Joint Surg. 1999;81-A:259-278.Google Scholar
  40. 40.
    Krompinger WJ, Fulkerson JP. Lateral retinacular release for intractable lateral retinacular pain. Clin Orthop Relat Res. 1983;179:191-193.PubMedCrossRefGoogle Scholar
  41. 41.
    Kumar D, Alvand A, Beacon JP. Impingement of infrapatellar fat pad (Hoffa’s disease): results of high-portal arthro­scopic resection. Arthroscopy. 2007;23:1180-1186.PubMedCrossRefGoogle Scholar
  42. 42.
    Lee TH, Kato H, Kogure K, et al. Temporal profile of nerve growth factor-like immunoreactivity after transient focal cerebral ischemia in rats. Brain Res. 1996;713:199-210.PubMedCrossRefGoogle Scholar
  43. 43.
    Liu Y, Cox SR, Morita T, et al. Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells. Identification of a 5′ enhancer. Circ Res. 1995;77:638-643.PubMedGoogle Scholar
  44. 44.
    Malcangio M, Garrett NE, Cruwys S, et al. Nerve growth factor- and neurotrophin-3-induced changes in nociceptive threshold and the release of substance P from the rat isolated spinal cord. J Neurosci. 1997;17:8459-8467.PubMedGoogle Scholar
  45. 45.
    Maralcan G, Kuru I, Issi S, et al. The innervation of patella: anatomical and clinical study. Surg Radiol Anat. 2005;27:331-335.PubMedCrossRefGoogle Scholar
  46. 46.
    Marti HJ, Bernaudin M, Bellail A, et al. Hypoxia-induced vascular endothelial growth factor expression precedes neovascularization after cerebral ischemia. Am J Pathol. 2000; 156:965-976.PubMedCrossRefGoogle Scholar
  47. 47.
    Messner K, Wei Y, Andersson B, et al. Rat model of Achilles tendon disorder. A pilot study. Cells Tissues Organs. 1999;165:30-39.PubMedCrossRefGoogle Scholar
  48. 48.
    Minchenko A, Bauer T, Salceda S, et al. Hypoxic stimulation of vascular endothelial growth factor expression in vitro and in vivo. Lab Invest. 1994;71:374-379.PubMedGoogle Scholar
  49. 49.
    Mitchell AC, Fallon MT. A single infusión of intravenous ketamine improves pain relief in patients with critical limb ischemia: results of a double blind randomised controlled trial. Pain. 2002;97:275-281.PubMedCrossRefGoogle Scholar
  50. 50.
    Mori Y, Fujimoto A, Okumo H, et al. Lateral retinaculum release in adolescent patellofemoral disorders: its relationship to peripheral nerve injury in the lateral retinaculum. Bull Hosp Jt Dis Orthop Inst. 1991;51:218-229.PubMedGoogle Scholar
  51. 51.
    Mukai K, Rosai J, Burgdorf WH. Localization of factor VIII-related antigen in vascular endothelial cells using an immunoperoxidase method. Am J Surg Pathol. 1980;4:273-276.PubMedCrossRefGoogle Scholar
  52. 52.
    Nagashima M, Yoshino S, Ishiwata T, et al. Role of vascular endothelial growth factor in angiogenesis of rheumatoid arthritis. J Rheumatol. 1995;22:1624-1630.PubMedGoogle Scholar
  53. 53.
    Naslund J. Patellofemoral pain syndrome. Clinical and pathophysiological considerations. Thesis. Karolinska Institutet, Stockholm; 2006.Google Scholar
  54. 54.
    Nilsson G, Forsberg-Nilsson K, Xiang Z, et al. Human mast cells express functional TrkA and are a source of nerve growth factor. Eur J Immunol. 1997;27:2295-2301.PubMedCrossRefGoogle Scholar
  55. 55.
    Ogon P, Maier D, Jaeger A, et al. Arthroscopic patellar release for the treatment of chronic patellar tendinopathy. Arthroscopy. 2006;22:462.e1-462.e5.CrossRefGoogle Scholar
  56. 56.
    Palmgren T, Grönblad M, Virri J, et al. Immunohistochemical demonstration of sensory and autonomic nerve terminals in herniated lumbar disc tissue. Spine. 1996;21:1301-1306.PubMedCrossRefGoogle Scholar
  57. 57.
    Pufe T, Petersen W, Tillmann B, et al. The splice variants VEGF121 and VEGF189 of the angiogenic peptide vascular endothelial growth factor are expressed in osteoarthritic cartilage. Arthritis Rheum. 2001;44:1082-1088.PubMedCrossRefGoogle Scholar
  58. 58.
    Richard DE, Berra E, Pouyssegur J. Angiogenesis: how a tumor adapts to hypoxia. Biochem Biophys Res Commun. 1999;266:718-722.PubMedCrossRefGoogle Scholar
  59. 59.
    Richardson EP, DeGirolami U. Pathology of the Peripheral Nerve. Philadelphia: W.B. Saunders Company; 1995.Google Scholar
  60. 60.
    Sanchis-Alfonso V, Gastaldi-Orquín E, Martinez-SanJuan V. Usefulness of computed tomography in evaluating the patellofemoral joint before and after Insall’s realignment. Correlation with short-term clinical results. Am J Knee Surg. 1994;7:65-72.Google Scholar
  61. 61.
    Sanchis-Alfonso V, Roselló-Sastre E. Proliferación neural e isquemia. Rev Patol Rodilla. 1998;3:60-63.Google Scholar
  62. 62.
    Sanchis-Alfonso V, Roselló-Sastre E. Immunohistochemical analysis for neural markers of the lateral retinaculum in patients with isolated symptomatic patellofemoral malalignment. A neuroanatomic basis for anterior knee pain in the active young patient. Am J Sports Med. 2000;28:725-731.PubMedGoogle Scholar
  63. 63.
    Sanchis-Alfonso V, Roselló-Sastre E. Anterior knee pain in the young patient – what causes the pain? “Neural model”. Acta Orthop Scand. 2003;74:697-703.PubMedCrossRefGoogle Scholar
  64. 64.
    Sanchis-Alfonso V, Roselló-Sastre E, Martinez-SanJuan V. Pathogenesis of anterior knee pain syndrome and functional patellofemoral instability in the active young. A review. Am J Knee Surg. 1999;12:29-40.PubMedGoogle Scholar
  65. 65.
    Sanchis-Alfonso V, Roselló-Sastre E, Monteagudo-Castro C, et al. Quantitative analysis of nerve changes in the lateral retinaculum in patients with isolated symptomatic patellofemoral malalignment. A preliminary study. Am J Sports Med. 1998;26:703-709.PubMedGoogle Scholar
  66. 66.
    Sanchis-Alfonso V, Roselló-Sastre E, Revert F. Neural growth factor expression in the lateral retinaculum in painful patellofemoral malalignment. Acta Orthop Scand. 2001; 72:146-149.PubMedCrossRefGoogle Scholar
  67. 67.
    Sanchis-Alfonso V, Roselló-Sastre E, Revert F, et al. Histologic retinacular changes associated with ischemia in painful patellofemoral malalignment. Orthopedics. 2005;28: 593-599.PubMedGoogle Scholar
  68. 68.
    Sanchis-Alfonso V, Roselló-Sastre E, Subías-López A. Mechanisms of pain in jumper’s knee. A histological and immunohistochemical study. J Bone Joint Surg. 1999; 81-B((Supp I)):82.Google Scholar
  69. 69.
    Sanchis-Alfonso V, Roselló-Sastre E, Subías-López A. Neuroanatomic basis for pain in patellar tendinosis (“jumper’s knee”): a neuroimmunohistochemical study. Am J Knee Surg. 2001;14:174-177.PubMedGoogle Scholar
  70. 70.
    Sandow MJ, Goodfellow JW. The natural history of anterior knee pain in adolescents. J Bone Joint Surg. 1985;67-B:36-38.Google Scholar
  71. 71.
    Selfe J, Harper L, Pedersen I, et al. Cold legs: a potential indicator of negative outcome in the rehabilitation of patients with patellofemoral pain syndrome. Knee. 2003;10:139-143.PubMedCrossRefGoogle Scholar
  72. 72.
    Selfe J, Karki A, Stevens D. A review of the role of circulatory deficit in the genesis of patellofemoral pain. Phys Ther Rev. 2002;7:169-172.CrossRefGoogle Scholar
  73. 73.
    Sherman BE, Chole RA. A mechanism for sympathectomy-induced bone resorption in the middle ear. Otolaryngol Head Neck Surg. 1995;113:569-581.PubMedGoogle Scholar
  74. 74.
    Shweiki D, Itin A, Soffer D, et al. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature. 1992;359:843-845.PubMedCrossRefGoogle Scholar
  75. 75.
    Society for Ultrastructural Pathology. Handbook of Diagnostic Electron Microscopy for Pathologists-in-Training. New York, Tokyo: Igaku-Shoin Medical Publishers Committee; 1995.Google Scholar
  76. 76.
    Soifer TB, Levy HJ, Soifer FM, et al. Neurohistology of the subacromial space. Arthroscopy. 1996;12:182-186.PubMedCrossRefGoogle Scholar
  77. 77.
    Solomonow M, Ambrosia RD. Neural reflex arcs and muscle control of knee stability and motion. In: Scott WN, ed. Ligament and Extensor Mechanism Injuries of the Knee: Diagnosis and Treatment. St. Louis: Mosby-Year Book; 1991:389-400.Google Scholar
  78. 78.
    Steinbrech DS, Mehrara BJ, Saadeh PB, et al. Hypoxia regulates VEGF expression and cellular proliferation by osteoblasts in vitro. Plast Reconstr Surg. 1999;104:738-747.PubMedCrossRefGoogle Scholar
  79. 79.
    Vega J, Golano P, Perez-Carro L. Electrosurgical arthroscopic patellar denervation. Arthroscopy. 2006;22:1028. el-3.CrossRefGoogle Scholar
  80. 80.
    Willberg L, Sunding K, Forssblad M, et al. Ultrasound- and Doppler-guided arthroscopic saving to treat jumper’s knee: a technical note. Knee Surg Sports Traumatol Arthrosc. 2007;15:1400-1403.PubMedCrossRefGoogle Scholar
  81. 81.
    Wilson AS, Lee HB. Hypothesis relevant to defective position sense in a damaged knee. J Neurol Neurosurg Psychiatry. 1986;49:1462-1463.PubMedCrossRefGoogle Scholar
  82. 82.
    Witonski D, Wagrowska-Danielewicz M. Distribution of substance-P nerve fibers in the knee joint in patients with anterior knee pain syndrome. Knee Surg Sports Traumatol Arthrosc. 1999;7:177-183.PubMedCrossRefGoogle Scholar
  83. 83.
    Wojtys EM, Beaman DN, Glover RA, et al. Innervation of the human knee joint by substance-P fibers. Arthroscopy. 1990;6:254-263.PubMedCrossRefGoogle Scholar
  84. 84.
    Woolf CJ. Pain: moving from symptom control toward mechanism-specific pharmacologic management. Ann Intern Med. 2004;140:441-451.PubMedGoogle Scholar
  85. 85.
    Woolf CJ, Allchorne A, Safieh-Garabedian B, et al. Cytokines, nerve growth factor and inflammatory hyperalgesia: the contribution of tumour necrosis factor alpha. Br J Pharmacol. 1997;121:417-424.PubMedCrossRefGoogle Scholar
  86. 86.
    Yamada T, Sawatsubashi M, Yakushiji H, et al. Localization of vascular endothelial growth factor in synovial membrane mast cells: examination with “multi-labelling subtraction immunostaining”. Virchows Arch. 1998;433:567-570.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Vicente Sanchis-Alfonso
    • 1
  • Esther Roselló-Sastre
  • Juan Saus-Mas
  • Fernando Revert-Ros
  1. 1.International Patellofemoral Study Group, International ACL Study Group, Hospital 9 de Octubre, Hospital Arnau de Vilanova, School of MedicineCatholic University of ValenciaValenciaSpain

Personalised recommendations