Advertisement

Health Insurance Fraud Detection

  • Yong Shi
  • Yingjie Tian
  • Gang Kou
  • Yi Peng
  • Jianping Li
Part of the Advanced Information and Knowledge Processing book series (AI&KP)

Abstract

Health insurance fraud detection is an important and challenging task. Traditional heuristic-rule based fraud detection techniques can not identify complex fraud schemes. Such a situation demands more sophisticated analytical methods and techniques that are capable of detecting fraud activities from large databases. Traditionally, insurance companies use human inspections and heuristic rules to detect fraud. As the number of electronic insurance claims increases each year, it is difficult to detect insurance fraud in a timely manner by manual methods alone. In addition, new types of fraud emerge constantly and SQL operations based on heuristic rules cannot identify those new emerging fraud schemes. Such a situation demands more sophisticated analytical methods and techniques that are capable of detecting fraud activities from large databases. This chapter describes the application of three predictive models: MCLP, decision tree, and Naive Bayes classifier, to identify suspicious claims to assist manual inspections. The predictive models can label high-risk claims and help investigators to focus on suspicious records and accelerate the claim-handling process.

Keywords

Tree Node Heuristic Rule Decision Tree Model Fraud Detection Entropy Reduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 196.
    The National Health Care Anti-Fraud Association. http://www.nhcaa.org/ (2005)

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Yong Shi
    • 1
    • 2
  • Yingjie Tian
    • 1
  • Gang Kou
    • 3
  • Yi Peng
    • 3
  • Jianping Li
    • 4
  1. 1.Research Center on Fictitious Economy and Data ScienceChinese Academy of SciencesBeijingChina
  2. 2.College of Information Science & TechnologyUniversity of Nebraska at OmahaOmahaUSA
  3. 3.School of Management and EconomicsUniversity of Electronic Science and Technology of ChinaChengduChina
  4. 4.Institute of Policy and ManagementChinese Academy of SciencesBeijingChina

Personalised recommendations