Variants and Extensions

  • Lars Grüne
  • Jürgen Pannek
Part of the Communications and Control Engineering book series (CCE)


The results developed so far in this book can be extended in many ways. In this chapter we present a selection of possible variants and extensions. Some of these introduce new combinations of techniques developed in the previous chapters, others relax some of the previous assumptions in order to obtain more general results or strengthen assumptions in order to derive stronger results. Several sections contain algorithmic ideas which can be added on top of the basic NMPC schemes from the previous chapters. Parts of this chapter contain results which are somewhat preliminary and are thus subject to further research. Some sections have a survey like style and, in contrast to the other chapters of this book, proofs are occasionally only sketched with appropriate references to the literature.


Optimal Control Problem Lyapunov Function Asymptotic Stability Inverted Pendulum Sampling Instant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Alamir, M.: Stabilization of Nonlinear Systems Using Receding-horizon Control Schemes. Lecture Notes in Control and Information Sciences, vol. 339. Springer, London (2006) MATHGoogle Scholar
  2. 2.
    Angeli, D., Rawlings, J.B.: Receding horizon cost optimization and control for nonlinear plants. In: Proceedings of the 8th IFAC Symposium on Nonlinear Control Systems – NOLCOS 2010, Bologna, Italy, pp. 1217–1223 (2010) Google Scholar
  3. 3.
    Angeli, D., Amrit, R., Rawlings, J.B.: Receding horizon cost optimization for overly constrained nonlinear plants. In: Proceedings of the 48th IEEE Conference on Decision and Control – CDC 2009, Shanghai, China, pp. 7972–7977 (2009) Google Scholar
  4. 4.
    Chen, W., Ballance, D.J., O’Reilly, J.: Model predictive control of nonlinear systems: Computational delay and stability. IEE Proc., Control Theory Appl.147(4), 387–394 (2000) CrossRefGoogle Scholar
  5. 5.
    De Nicolao, G., Magni, L., Scattolini, R.: Stability and robustness of nonlinear receding horizon control. In: Nonlinear Predictive Control, pp. 3–23. Birkhäuser, Basel (2000) CrossRefGoogle Scholar
  6. 6.
    Di Palma, F., Magni, L.: On optimality of nonlinear model predictive control. Systems Control Lett.56(1), 58–61 (2007) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Diehl, M., Amrit, R., Rawlings, J.B.: A Lyapunov function for economic optimizing model predictive control. IEEE Trans. Autom. Control (2010, in press). doi: 10.1109/TAC.2010.2101291
  8. 8.
    Diehl, M., Findeisen, R., Allgöwer, F., Bock, H.G., Schlöder, J.P.: Nominal stability of the real-time iteration scheme for nonlinear model predictive control. IEE Proc., Control Theory Appl.152, 296–308 (2005) CrossRefGoogle Scholar
  9. 9.
    Findeisen, R.: Nonlinear model predictive control: A sampled-data feedback perspective. PhD thesis, University of Stuttgart, VDI-Verlag, Düsseldorf (2004) Google Scholar
  10. 10.
    Findeisen, R., Allgöwer, F.: Computational delay in nonlinear model predictive control. In: Proceedings of the International Symposium on Advanced Control of Chemical Processes, Hong Kong, China, 2003. Paper No. 561 Google Scholar
  11. 11.
    Graichen, K., Kugi, A.: Stability and incremental improvement of suboptimal MPC without terminal constraints. IEEE Trans. Automat. Control55, 2576–2580 (2010) MathSciNetCrossRefGoogle Scholar
  12. 12.
    Grass, D., Caulkins, J.P., Feichtinger, G., Tragler, G., Behrens, D.A.: Optimal Control of Nonlinear Processes. With Applications in Drugs, Corruption, and Terror. Springer, Berlin (2008) MATHCrossRefGoogle Scholar
  13. 13.
    Grimm, G., Messina, M.J., Tuna, S.E., Teel, A.R.: Model predictive control: for want of a local control Lyapunov function, all is not lost. IEEE Trans. Automat. Control50(5), 546–558 (2005) MathSciNetCrossRefGoogle Scholar
  14. 14.
    Grüne, L.: Worst case vs. average performance estimates for unconstrained NMPC schemes. PAMM10, 607–608 (2010) CrossRefGoogle Scholar
  15. 15.
    Grüne, L., Pannek, J.: Practical NMPC suboptimality estimates along trajectories. Systems Control Lett.58(3), 161–168 (2009) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Grüne, L., Pannek, J.: Analysis of unconstrained NMPC schemes with incomplete optimization. In: Proceedings of the 8th IFAC Symposium on Nonlinear Control Systems – NOLCOS 2010, Bologna, Italy, pp. 238–243 (2010) Google Scholar
  17. 17.
    Grüne, L., Rantzer, A.: On the infinite horizon performance of receding horizon controllers. IEEE Trans. Automat. Control53, 2100–2111 (2008) MathSciNetCrossRefGoogle Scholar
  18. 18.
    Grüne, L., Pannek, J., Worthmann, K.: A networked unconstrained nonlinear MPC scheme. In: Proceedings of the European Control Conference – ECC 2009, Budapest, Hungary, pp. 91–96 (2009) Google Scholar
  19. 19.
    Grüne, L., Pannek, J., Worthmann, K.: A prediction based control scheme for networked systems with delays and packet dropouts. In: Proceedings of the 48th IEEE Conference on Decision and Control – CDC 2009, Shanghai, China, pp. 537–542 (2009) Google Scholar
  20. 20.
    Grüne, L., Pannek, J., Seehafer, M., Worthmann, K.: Analysis of unconstrained nonlinear MPC schemes with varying control horizon. SIAM J. Control Optim.48, 4938–4962 (2010) MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Grüne, L., von Lossow, M., Pannek, J., Worthmann, K.: MPC: implications of a growth condition on exponentially controllable systems. In: Proceedings of the 8th IFAC Symposium on Nonlinear Control Systems – NOLCOS 2010, Bologna, Italy, pp. 385–390 (2010) Google Scholar
  22. 22.
    Jadbabaie, A., Hauser, J.: On the stability of receding horizon control with a general terminal cost. IEEE Trans. Automat. Control50(5), 674–678 (2005) MathSciNetCrossRefGoogle Scholar
  23. 23.
    Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice Hall, Upper Saddle River (2002) MATHGoogle Scholar
  24. 24.
    Limón, D., Alamo, T., Salas, F., Camacho, E.F.: On the stability of constrained MPC without terminal constraint. IEEE Trans. Automat. Control51(5), 832–836 (2006) MathSciNetCrossRefGoogle Scholar
  25. 25.
    Michalska, H., Mayne, D.Q.: Robust receding horizon control of constrained nonlinear systems. IEEE Trans. Automat. Control38(11), 1623–1633 (1993) MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Nešić, D., Teel, A.R.: A framework for stabilization of nonlinear sampled-data systems based on their approximate discrete-time models. IEEE Trans. Automat. Control49(7), 1103–1122 (2004) MathSciNetCrossRefGoogle Scholar
  27. 27.
    Nešić, D., Grüne, L.: A receding horizon control approach to sampled-data implementation of continuous-time controllers. Systems Control Lett.55, 660–672 (2006) MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    de Oliveira Kothare, S.L., Morari, M.: Contractive model predictive control for constrained nonlinear systems. IEEE Trans. Automat. Control45(6), 1053–1071 (2000) MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Pannek, J.: Receding horizon control: A suboptimality-based approach. PhD thesis, University of Bayreuth, Germany (2009) Google Scholar
  30. 30.
    Parisini, T., Zoppoli, R.: A receding-horizon regulator for nonlinear systems and a neural approximation. Automatica31(10), 1443–1451 (1995) MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Rawlings, J.B., Mayne, D.Q.: Model Predictive Control: Theory and Design. Nob Hill Publishing, Madison (2009) Google Scholar
  32. 32.
    Scokaert, P.O.M., Mayne, D.Q., Rawlings, J.B.: Suboptimal model predictive control (feasibility implies stability). IEEE Trans. Automat. Control44(3), 648–654 (1999) MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Seierstad, A., Sydsæter, K.: Optimal Control Theory with Economic Applications. North-Holland, Amsterdam (1987) MATHGoogle Scholar
  34. 34.
    Varutti, P., Findeisen, R.: Compensating network delays and information loss by predictive control methods. In: Proceedings of the European Control Conference – ECC 2009, Budapest, Hungary, pp. 1722–1727 (2009) Google Scholar
  35. 35.
    Zavala, V.M., Biegler, L.T.: The advanced-step NMPC controller: optimality, stability and robustness. Automatica45(1), 86–93 (2009) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

There are no affiliations available

Personalised recommendations