Skip to main content

Part of the book series: Communications and Control Engineering ((CCE))

  • 6412 Accesses

Abstract

The results developed so far in this book can be extended in many ways. In this chapter we present a selection of possible variants and extensions. Some of these introduce new combinations of techniques developed in the previous chapters, others relax some of the previous assumptions in order to obtain more general results or strengthen assumptions in order to derive stronger results. Several sections contain algorithmic ideas which can be added on top of the basic NMPC schemes from the previous chapters. Parts of this chapter contain results which are somewhat preliminary and are thus subject to further research. Some sections have a survey like style and, in contrast to the other chapters of this book, proofs are occasionally only sketched with appropriate references to the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Integral costs (3.4) can be treated, too, but this is somewhat more technical, cf. Grüne, von Lossow, Pannek and Worthmann [21, Sect. 4.2].

  2. 2.

    For more information on these algorithms see Chap. 10 and for numerical aspects of the theory in this chapter in particular Sect. 10.6.

References

  1. Alamir, M.: Stabilization of Nonlinear Systems Using Receding-horizon Control Schemes. Lecture Notes in Control and Information Sciences, vol. 339. Springer, London (2006)

    MATH  Google Scholar 

  2. Angeli, D., Rawlings, J.B.: Receding horizon cost optimization and control for nonlinear plants. In: Proceedings of the 8th IFAC Symposium on Nonlinear Control Systems – NOLCOS 2010, Bologna, Italy, pp. 1217–1223 (2010)

    Google Scholar 

  3. Angeli, D., Amrit, R., Rawlings, J.B.: Receding horizon cost optimization for overly constrained nonlinear plants. In: Proceedings of the 48th IEEE Conference on Decision and Control – CDC 2009, Shanghai, China, pp. 7972–7977 (2009)

    Google Scholar 

  4. Chen, W., Ballance, D.J., O’Reilly, J.: Model predictive control of nonlinear systems: Computational delay and stability. IEE Proc., Control Theory Appl.147(4), 387–394 (2000)

    Article  Google Scholar 

  5. De Nicolao, G., Magni, L., Scattolini, R.: Stability and robustness of nonlinear receding horizon control. In: Nonlinear Predictive Control, pp. 3–23. Birkhäuser, Basel (2000)

    Chapter  Google Scholar 

  6. Di Palma, F., Magni, L.: On optimality of nonlinear model predictive control. Systems Control Lett.56(1), 58–61 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Diehl, M., Amrit, R., Rawlings, J.B.: A Lyapunov function for economic optimizing model predictive control. IEEE Trans. Autom. Control (2010, in press). doi:10.1109/TAC.2010.2101291

  8. Diehl, M., Findeisen, R., Allgöwer, F., Bock, H.G., Schlöder, J.P.: Nominal stability of the real-time iteration scheme for nonlinear model predictive control. IEE Proc., Control Theory Appl.152, 296–308 (2005)

    Article  Google Scholar 

  9. Findeisen, R.: Nonlinear model predictive control: A sampled-data feedback perspective. PhD thesis, University of Stuttgart, VDI-Verlag, Düsseldorf (2004)

    Google Scholar 

  10. Findeisen, R., Allgöwer, F.: Computational delay in nonlinear model predictive control. In: Proceedings of the International Symposium on Advanced Control of Chemical Processes, Hong Kong, China, 2003. Paper No. 561

    Google Scholar 

  11. Graichen, K., Kugi, A.: Stability and incremental improvement of suboptimal MPC without terminal constraints. IEEE Trans. Automat. Control55, 2576–2580 (2010)

    Article  MathSciNet  Google Scholar 

  12. Grass, D., Caulkins, J.P., Feichtinger, G., Tragler, G., Behrens, D.A.: Optimal Control of Nonlinear Processes. With Applications in Drugs, Corruption, and Terror. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  13. Grimm, G., Messina, M.J., Tuna, S.E., Teel, A.R.: Model predictive control: for want of a local control Lyapunov function, all is not lost. IEEE Trans. Automat. Control50(5), 546–558 (2005)

    Article  MathSciNet  Google Scholar 

  14. Grüne, L.: Worst case vs. average performance estimates for unconstrained NMPC schemes. PAMM10, 607–608 (2010)

    Article  Google Scholar 

  15. Grüne, L., Pannek, J.: Practical NMPC suboptimality estimates along trajectories. Systems Control Lett.58(3), 161–168 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Grüne, L., Pannek, J.: Analysis of unconstrained NMPC schemes with incomplete optimization. In: Proceedings of the 8th IFAC Symposium on Nonlinear Control Systems – NOLCOS 2010, Bologna, Italy, pp. 238–243 (2010)

    Google Scholar 

  17. Grüne, L., Rantzer, A.: On the infinite horizon performance of receding horizon controllers. IEEE Trans. Automat. Control53, 2100–2111 (2008)

    Article  MathSciNet  Google Scholar 

  18. Grüne, L., Pannek, J., Worthmann, K.: A networked unconstrained nonlinear MPC scheme. In: Proceedings of the European Control Conference – ECC 2009, Budapest, Hungary, pp. 91–96 (2009)

    Google Scholar 

  19. Grüne, L., Pannek, J., Worthmann, K.: A prediction based control scheme for networked systems with delays and packet dropouts. In: Proceedings of the 48th IEEE Conference on Decision and Control – CDC 2009, Shanghai, China, pp. 537–542 (2009)

    Google Scholar 

  20. Grüne, L., Pannek, J., Seehafer, M., Worthmann, K.: Analysis of unconstrained nonlinear MPC schemes with varying control horizon. SIAM J. Control Optim.48, 4938–4962 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Grüne, L., von Lossow, M., Pannek, J., Worthmann, K.: MPC: implications of a growth condition on exponentially controllable systems. In: Proceedings of the 8th IFAC Symposium on Nonlinear Control Systems – NOLCOS 2010, Bologna, Italy, pp. 385–390 (2010)

    Google Scholar 

  22. Jadbabaie, A., Hauser, J.: On the stability of receding horizon control with a general terminal cost. IEEE Trans. Automat. Control50(5), 674–678 (2005)

    Article  MathSciNet  Google Scholar 

  23. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice Hall, Upper Saddle River (2002)

    MATH  Google Scholar 

  24. Limón, D., Alamo, T., Salas, F., Camacho, E.F.: On the stability of constrained MPC without terminal constraint. IEEE Trans. Automat. Control51(5), 832–836 (2006)

    Article  MathSciNet  Google Scholar 

  25. Michalska, H., Mayne, D.Q.: Robust receding horizon control of constrained nonlinear systems. IEEE Trans. Automat. Control38(11), 1623–1633 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nešić, D., Teel, A.R.: A framework for stabilization of nonlinear sampled-data systems based on their approximate discrete-time models. IEEE Trans. Automat. Control49(7), 1103–1122 (2004)

    Article  MathSciNet  Google Scholar 

  27. Nešić, D., Grüne, L.: A receding horizon control approach to sampled-data implementation of continuous-time controllers. Systems Control Lett.55, 660–672 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. de Oliveira Kothare, S.L., Morari, M.: Contractive model predictive control for constrained nonlinear systems. IEEE Trans. Automat. Control45(6), 1053–1071 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Pannek, J.: Receding horizon control: A suboptimality-based approach. PhD thesis, University of Bayreuth, Germany (2009)

    Google Scholar 

  30. Parisini, T., Zoppoli, R.: A receding-horizon regulator for nonlinear systems and a neural approximation. Automatica31(10), 1443–1451 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  31. Rawlings, J.B., Mayne, D.Q.: Model Predictive Control: Theory and Design. Nob Hill Publishing, Madison (2009)

    Google Scholar 

  32. Scokaert, P.O.M., Mayne, D.Q., Rawlings, J.B.: Suboptimal model predictive control (feasibility implies stability). IEEE Trans. Automat. Control44(3), 648–654 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  33. Seierstad, A., Sydsæter, K.: Optimal Control Theory with Economic Applications. North-Holland, Amsterdam (1987)

    MATH  Google Scholar 

  34. Varutti, P., Findeisen, R.: Compensating network delays and information loss by predictive control methods. In: Proceedings of the European Control Conference – ECC 2009, Budapest, Hungary, pp. 1722–1727 (2009)

    Google Scholar 

  35. Zavala, V.M., Biegler, L.T.: The advanced-step NMPC controller: optimality, stability and robustness. Automatica45(1), 86–93 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Grüne .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Grüne, L., Pannek, J. (2011). Variants and Extensions. In: Nonlinear Model Predictive Control. Communications and Control Engineering. Springer, London. https://doi.org/10.1007/978-0-85729-501-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-501-9_7

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-500-2

  • Online ISBN: 978-0-85729-501-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics