# Numerical Optimal Control of Nonlinear Systems

Chapter
Part of the Communications and Control Engineering book series (CCE)

## Abstract

In this chapter, we present methods for the numerical solution of the constrained finite horizon nonlinear optimal control problems which occurs in each iterate of the NMPC procedure. To this end, we first discuss standard discretization techniques to obtain a nonlinear optimization problem in standard form. Utilizing this form, we outline basic versions of the two most common solution methods for such problems, that is Sequential Quadratic Programming (SQP) and Interior Point Methods (IPM). Furthermore, we investigate interactions between the differential equation solver, the discretization technique and the optimization method and present several NMPC specific details concerning the warm start of the optimization routine. Finally, we discuss NMPC variants relying on inexact solutions of the finite horizon optimal control problem.

## Keywords

Optimal Control Problem Equality Constraint Interior Point Method Merit Function Discretization Technique
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## References

1. 1.
Albersmeyer, J., Beigel, D., Kirches, C., Wirsching, L., Bock, H.G., Schlöder, J.: Fast nonlinear model predictive control with an application in automotive engineering. In: Magni, L., Raimondo, D.M., Allgöwer, F. (eds.) Nonlinear Model Predictive Control. Lecture Notes in Control and Information Sciences, vol. 384, pp. 471–480. Springer, Berlin (2009)
2. 2.
Bell, M.L., Limebeer, D.J.N., Sargent, R.W.H.: Robust receding horizon optimal control. Comput. Chem. Eng.20, 781–786 (1996). Supplement 2, European Symposium on Computer Aided Process Engineering 6
3. 3.
Best, M.J.: An algorithm for the solution of the parametric quadratic programming problem. In: Applied Mathematics and Parallel Computing, pp. 57–76 (1996)
4. 4.
Bock, H.G.: Numerical treatment of inverse problems in chemical reaction kinetics. In: Ebert, K.H., Deuflhard, P., Jäger, W. (eds.) Modelling of Chemical Reaction Systems. Springer Series in Chemical Physics, vol. 18, pp. 102–125. Springer, Heidelberg (1981)
5. 5.
Bock, H.G., Plitt, K.: A multiple shooting algorithm for direct solution of optimal control problems. In: Proceedings of the 9th IFAC World Congress Budapest, Pergamon, Oxford, pp. 242–247 (1984) Google Scholar
6. 6.
Broyden, C.G.: The convergence of a class of double-rank minimization algorithms. II. The new algorithm. J. Inst. Math. Appl.6, 222–231 (1970)
7. 7.
Bryson, A.E., Ho, Y.C.: Applied Optimal Control. Hemisphere, Washington (1975). Optimization, estimation, and control. Revised printing Google Scholar
8. 8.
Chamberlain, R.M., Powell, M.J.D., Lemarechal, C., Pedersen, H.C.: The watchdog technique for forcing convergence in algorithms for constrained optimization. Math. Program. Stud.16, 1–17 (1982). Algorithms for constrained minimization of smooth nonlinear functions
9. 9.
Coleman, T.F., Conn, A.R.: Second-order conditions for an exact penalty function. Math. Program.19(2), 178–185 (1980)
10. 10.
Davidon, W.C.: Variable metric method for minimization. Research and Dev. Rep. ANL-5990 (Rev.), Argonne Nat. Lab. (1959) Google Scholar
11. 11.
Diehl, M.: Real-time optimization for large scale nonlinear processes. PhD thesis, University of Heidelberg (2001) Google Scholar
12. 12.
Diehl, M., Bock, H.G., Schlöder, J.P., Findeisen, R., Nagy, Z., Allgöwer, F.: Real-time optimization and nonlinear model predictive control of processes governed by differential–algebraic equations. J. Process Control12(4), 577–585 (2002)
13. 13.
Dontchev, A.L., Hager, W.W., Veliov, V.M.: Second-order Runge–Kutta approximations in control constrained optimal control. SIAM J. Numer. Anal.38(1), 202–226 (2000)
14. 14.
Ferreau, H.J., Bock, H.G., Diehl, M.: An online active set strategy to overcome the limitations of explicit MPC. Internat. J. Robust Nonlinear Control18(8), 816–830 (2008)
15. 15.
Fiacco, A.V.: Introduction to Sensitivity and Stability Analysis in Nonlinear Programming. Mathematics in Science and Engineering, vol. 165. Academic Press, Orlando (1983)
16. 16.
Fletcher, R.: A new approach to variable metric algorithms. Comput. J.13, 317–322 (1970)
17. 17.
Fletcher, R.: Practical Methods of Optimization, 2nd edn. Wiley–Interscience, New York (2001)
18. 18.
Fletcher, R., Powell, M.J.D.: A rapidly convergent descent method for minimization. Comput. J.6, 163–168 (1963)
19. 19.
Goldfarb, D.: A family of variable metric methods derived by variational means. Math. Comp.24, 23–26 (1970)
20. 20.
Gould, N.I.M., Orban, D., Toint, P.L.: Numerical methods for large-scale nonlinear optimization. Acta Numer.14, 299–361 (2005)
21. 21.
Griewank, A., Walther, A.: Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia (2008)
22. 22.
Gyurkovics, E., Elaiw, A.M.: Conditions for MPC based stabilization of sampled-data nonlinear systems via discrete-time approximations. In: Findeisen, R., Allgöwer, F., Biegler, L.T. (eds.) Assessment and Future Directions of Nonlinear Model Predictive Control. Lecture Notes in Control and Information Sciences, vol. 358, pp. 35–48. Springer, Berlin (2007)
23. 23.
Hairer, E., Wanner, G.: Solving Ordinary Differential Equations. II, 2nd edn. Springer Series in Computational Mathematics, vol. 14. Springer, Berlin (1996)
24. 24.
Han, S.P.: A globally convergent method for nonlinear programming. J. Optim. Theory Appl.22(3), 297–309 (1977)
25. 25.
Malanowski, K., Büskens, C., Maurer, H.: Convergence of approximations to nonlinear optimal control problems. In: Mathematical Programming with Data Perturbations. Lecture Notes in Pure and Applied Mathematics, vol. 195, pp. 253–284. Dekker, New York (1998) Google Scholar
26. 26.
Mangasarian, O.L.: Nonlinear Programming. McGraw-Hill, New York (1969). Reprinted by SIAM Publications 1995
27. 27.
Maratos, N.: Exact penalty function algorithms for finite dimensional and control optimization problems. PhD thesis, University of London (1978) Google Scholar
28. 28.
Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer Series in Operations Research and Financial Engineering. Springer, New York (2006)
29. 29.
Panier, E.R., Tits, A.L.: A superlinearly convergent feasible method for the solution of inequality constrained optimization problems. SIAM J. Control Optim.25(4), 934–950 (1987)
30. 30.
Powell, M.J.D.: A fast algorithm for nonlinearly constrained optimization calculations. In: Numerical Analysis (Proc. 7th Biennial Conf., Univ. Dundee, Dundee, 1977), pp. 144–157. Springer, Berlin (1978)
31. 31.
Powell, M.J.D.: Convergence properties of algorithms for nonlinear optimization. SIAM Rev.28(4), 487–500 (1986)
32. 32.
Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Eng. Pract.11, 733–764 (2003)
33. 33.
Schittkowski, K.: The nonlinear programming method of Wilson, Han, and Powell with an augmented Lagrangian type line search function. I. Convergence analysis. Numer. Math.38(1), 83–114 (1981/82)
34. 34.
Schittkowski, K.: On the convergence of a sequential quadratic programming method with an augmented Lagrangian line search function. Math. Oper.forsch. Stat., Ser. Optim.14(2), 197–216 (1983)
35. 35.
Shanno, D.F.: Conditioning of quasi-Newton methods for function minimization. Math. Comp.24, 647–656 (1970)
36. 36.
Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis, 3rd edn. Texts in Applied Mathematics, vol. 12. Springer, New York (2002). Translated from the German by R. Bartels, W. Gautschi and C. Witzgall
37. 37.
Zavala, V.M., Biegler, L.T.: Nonlinear programming strategies for state estimation and model predictive control. In: Magni, L., Raimondo, D.M., Allgöwer, F. (eds.) Nonlinear Model Predictive Control. Lecture Notes in Control and Information Sciences, vol. 384, pp. 419–432. Springer, Berlin (2009)