Skip to main content

Non-Interventional Imaging in Genitourinary Cancer

  • Chapter
  • First Online:
Urological Oncology

Abstract

Imaging has a wide role and numerous applications in the management of urological cancers. These include detection, characterization, staging, delivery of treatment and surveillance of cancer. The main modalities in clinical use include ultrasound, CT, and MRI. The application and the role of the modalities vary with each tumour type. Ultrasound plays an important role in the detection of renal and testicular cancer. Most staging investigations, assessment of treatment response and surveillance is performed using CT for renal, testicular and advanced bladder and prostate cancer. For local staging of prostate and bladder cancer, MRI has better performance than CT or US. Both US and CT are extensively used of biopsies and increasingly for the delivery of therapy particularly for renal cancer.

In this chapter, the authors discuss the basic principles of all cross-sectional imaging modalities and their role in main urological cancers. Each modality has clinical advantages and disadvantages which will be applied to cancer management. Modern advances within the modalities are also summarized with a discussion on emerging roles of imaging, particularly in detection and localization of prostate cancer using multiparametric MRI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dalla PL. What is left of i.v. urography? Eur Radiol. 2001;11(6):931–9.

    Article  Google Scholar 

  2. Chalmers N, Jackson RW. Comparison of iodixanol and iohexol in renal impairment. Br J Radiol. 1999;72(859):701–3.

    Article  CAS  PubMed  Google Scholar 

  3. Yousem DM, Gatewood OM, Goldman SM, Marshall FF. Synchronous and metachronous transitional cell carcinoma of the urinary tract: prevalence, incidence, and radiographic detection. Radiology. 1988;167(3):613–8.

    Article  CAS  PubMed  Google Scholar 

  4. Kang CH, Yu TJ, Hsieh HH, et al. The development of bladder tumors and contralateral upper urinary tract tumors after primary transitional cell carcinoma of the upper urinary tract. Cancer. 2003;98(8):1620–6.

    Article  PubMed  Google Scholar 

  5. Joffe SA, Servaes S, Okon S, Horowitz M. Multi-detector row CT urography in the evaluation of hematuria. Radiographics. 2003;23(6):1441–55.

    Article  PubMed  Google Scholar 

  6. McNicholas MM, Raptopoulos VD, Schwartz RK, et al. Excretory phase CT urography for opacification of the urinary collecting system. Am J Roentgenol. 1998;170:1261–7.

    Article  CAS  Google Scholar 

  7. Caoili EM, Cohan RH, Korobkin M, et al. Urinary tract abnormalities: initial experience with multi-detector row CT urography. Radiology. 2002;222(2):353–60.

    Article  PubMed  Google Scholar 

  8. Nawfel RD, Judy PF, Schleipman AR, Silverman SG. Patient radiation dose at CT urography and conventional urography. Radiology. 2004;232:126–32.

    Article  PubMed  Google Scholar 

  9. Portnoy O, Guranda L, Apter S, Eiss D, Amitai MM, Konen E. Optimization of 64-MDCT Urography: Effect of Dual-Phase Imaging With Furosemide on Collecting System Opacification and Radiation Dose. AJR Am J Roentgenol. 2011;197(5):W882–6.

    Article  PubMed  Google Scholar 

  10. Van Der Molen AJ, Cowan NC, Mueller-Lisse UG, Nolte-Ernsting CC, Takahashi S, Cohan RH. CT Urography Working Group of the European Society of Urogenital Radiology (ESUR). CT urography: definition, indications and techniques. A guideline for clinical practice. Eur Radiol. 2008;18(1):4–17.

    Article  Google Scholar 

  11. Kawashima A, Glockner JF, King Jr BF. CT urography and MR urography. Radiol Clin North Am. 2003;41(5):945–61.

    Article  PubMed  Google Scholar 

  12. Thompson IM, Peek M. Improvement in survival of patients with renal cell carcinoma- the role of the serendipitously detected tumor. J Urol. 1988;140(3):487–90.

    CAS  PubMed  Google Scholar 

  13. Pantuck AJ, Zisman A, Belldegrun AS. The changing natural history of renal cell carcinoma. J Urol. 2001;166(5):1611–23.

    Article  CAS  PubMed  Google Scholar 

  14. Habboub HK, Abu-Yousef MM, Williams RD, et al. Accuracy of color Doppler sonography in assessing venous thrombus extension in renal cell carcinoma. Am J Roentgenol. 1997;168(1):267–71.

    Article  CAS  Google Scholar 

  15. Kallman DA, King BF, Hattery RR, et al. Renal vein and inferior vena cava tumor thrombus in renal cell carcinoma: CT, US, MRI and venacavography. J Comput Assist Tomogr. 1992;16(2):240–7.

    Article  CAS  PubMed  Google Scholar 

  16. Robbin ML. Ultrasound contrast agents: a promising future. Radiol Clin North Am. 2001;39:399–414.

    Article  CAS  PubMed  Google Scholar 

  17. Jakobsen JA. Ultrasound contrast agents: clinical applications. Eur Radiol. 2001;11(8):1329–37.

    Article  CAS  PubMed  Google Scholar 

  18. Jayson M, Sanders H. Increased incidence of serendipitously discovered renal cell carcinoma. Urology. 1998;51(2):203–5.

    Article  CAS  PubMed  Google Scholar 

  19. Bosniak MA. The current radiological approach to renal cysts. Radiology. 1986;158:1–10.

    Article  CAS  PubMed  Google Scholar 

  20. Bosniak MA. The small (less than or equal to 3.0 cm) renal parenchymal tumor: detection, diagnosis, and controversies. Radiology. 1991;179(2):307–17.

    Article  CAS  PubMed  Google Scholar 

  21. Israel GM, Bosniak MA. Follow-up CT of moderately complex cystic lesions of the kidney (Bosniak category IIF). Am J Roentgenol. 2003;181(3):627–33.

    Article  Google Scholar 

  22. Abecassis M, McLoughlin MJ, Langer B, Kudlow JE. Serendipitous adrenal masses: prevalence, significance, and management. Am J Surg. 1985;149(6):783–8.

    Article  CAS  PubMed  Google Scholar 

  23. Glazer HS, Weyman PJ, Sagel SS, et al. Nonfunctioning adrenal masses: incidental discovery on computed tomography. Am J Roentgenol. 1982;139(1):81–5.

    Article  CAS  Google Scholar 

  24. Mitnick JS, Bosniak MA, Megibow AJ, Naidich DP. Non-functioning adrenal adenomas discovered incidentally on computed tomography. Radiology. 1983;148:495–9.

    Article  CAS  PubMed  Google Scholar 

  25. Francis IR, Smid A, Gross MD, et al. Adrenal masses in oncologic patients: functional and morphologic evaluation. Radiology. 1988;166(2):353–6.

    Article  CAS  PubMed  Google Scholar 

  26. Krestin GP, Freidmann G, Fishbach R, et al. Evaluation of adrenal masses in oncologic patients: dynamic contrast-enhanced MR vs CT. J Comput Assist Tomogr. 1991;15(1):104–10.

    Article  CAS  PubMed  Google Scholar 

  27. Frilling A, Tecklenborg K, Weber F, et al. Importance of adrenal incidentaloma in patients with a history of malignancy. Surgery. 2004;136(6):1289–96.

    Article  PubMed  Google Scholar 

  28. Korobkin M, Giordano TJ, Brodeur FJ, et al. Adrenal adenomas: relationship between histologic lipid and CT and MR findings. Radiology. 1996;200(3):743–7.

    Article  CAS  PubMed  Google Scholar 

  29. Boland GW, Lee MJ, Gazelle GS, et al. Characterization of adrenal masses using unenhanced CT: an analysis of the CT literature. Am J Roentgenol. 1998;171:201–4.

    Article  CAS  Google Scholar 

  30. Korobkin M, Brodeur FJ, Francis IR, et al. CT time-attenuation washout curves of adrenal adenomas and nonadenomas. Am J Roentgenol. 1998;170(3):747–52.

    Article  CAS  Google Scholar 

  31. Pena CS, Boland GW, Hahn PF, et al. Characterization of indeterminate (lipid-poor) adrenal masses: use of washout characteristics at contrast-enhanced CT. Radiology. 2000;217(3):798–802.

    Article  CAS  PubMed  Google Scholar 

  32. Francis IR, Casalino DD, Arellano RS, Baumgarten DA, Curry NS, Dighe M, et al. ACR Appropriateness Criteria® incidentally discovered adrenal mass. Reston: American College of Radiology (ACR); 2009.

    Google Scholar 

  33. Johnson CD, Dunnick NR, Cohan RH, Illescas FF. Renal adenocarcinoma: CT staging of 100 tumors. Am J Roentgenol. 1987;148(1):59–63.

    Article  CAS  Google Scholar 

  34. Fein AB, Lee JK, Balfe DM, et al. Diagnosis and staging of renal cell carcinoma: a comparison of MR imaging and CT. Am J Roentgenol. 1987;148(4):749–53.

    Article  CAS  Google Scholar 

  35. Studer UE, Scherz S, Scheidegger J, et al. Enlargement of regional lymph nodes in renal cell carcinoma is often not due to metastases. J Urol. 1990;144(2 Pt 1):243–5.

    CAS  PubMed  Google Scholar 

  36. Catalano C, Fraioli F, Laghi A, et al. High-resolution multidetector CT in the preoperative evaluation of patients with renal cell carcinoma. Am J Roentgenol. 2003;180(5):1271–7.

    Article  CAS  Google Scholar 

  37. Clayman Jr RV, Gonzalez R, Fraley EE. Renal cancer invading the inferior vena cava: clinical review and anatomical approach. J Urol. 1980;123(2):157–63.

    PubMed  Google Scholar 

  38. Hatcher PA, Anderson EE, Paulson DF, et al. Surgical management and prognosis of renal cell carcinoma invading the vena cava. J Urol. 1991;145(1):20–3.

    CAS  PubMed  Google Scholar 

  39. MacVicar D. Staging of testicular germ cell tumours. Clin Radiol. 1993;47:149–58.

    Article  CAS  PubMed  Google Scholar 

  40. Dixon AK, Ellis M, Sikora K. Computed tomography of testicular tumours: distribution of abdominal lymphadenopathy. Clin Radiol. 1986;37(6):519–23.

    Article  CAS  PubMed  Google Scholar 

  41. Williams MP, Cook JV, Duchesne GM. Psoas nodes-an overlooked site of metastasis from testicular tumours. Clin Radiol. 1989;40(6):607–9.

    Article  CAS  PubMed  Google Scholar 

  42. Coll DM, Uzzo RG, Herts BR, et al. 3-dimensional volume rendered computerized tomography for preoperative evaluation and intraoperative treatment of patients undergoing nephron sparing surgery. J Urol. 1999;161(4):1097–102.

    Article  CAS  PubMed  Google Scholar 

  43. Smith PA, Marshall FF, Corl FM, Fishman EK. Planning nephron-sparing renal surgery using 3D helical CT angiography. J Comput Assist Tomogr. 1999;23(5):649–54.

    Article  CAS  PubMed  Google Scholar 

  44. Coll DM, Herts BR, Davros WJ, Uzzo RG, Novick AC. Preoperative use of 3D volume rendering to demonstrate renal tumors and renal anatomy. Radiographics. 2000;20(2):431–8.

    Article  CAS  PubMed  Google Scholar 

  45. Sheth S, Scatarige JC, Horton KM, Corl FM, Fishman EK. Current concepts in the diagnosis and management of renal cell carcinoma: role of multidetector ct and three-dimensional CT. Radiographics 2001;21 Spec No:S237–54.

    Google Scholar 

  46. Young ST, Paulson EK, McCann RL, Baker ME. Appearance of oxidized cellulose (Surgicel) on postoperative CT scans: similarity to postoperative abscess. AJR Am J Roentgenol. 1993;160(2):275–7.

    Article  CAS  PubMed  Google Scholar 

  47. Mangar SA, Huddart RA, Parker CC, et al. Technological advances in radiotherapy for the treatment of localised prostate cancer. Eur J Cancer. 2005;41(6):908–21.

    Article  PubMed  Google Scholar 

  48. Langen KM, Jones DTL. Organ motion and its management. Int J Radiat Oncol Biol Phys. 2001;50:265–78.

    Article  CAS  PubMed  Google Scholar 

  49. Balter JM, Sandler HM, Lam K, Bree RL, Lichter AS, Ten Haken RK. Measurement of prostate movement over the course of routine radiotherapy using implanted markers. Int J Radiat Oncol Biol Phys. 1995;31:113–8.

    Article  CAS  PubMed  Google Scholar 

  50. Mallampati GK, Siegelman ES. MR imaging of the bladder. Magn Reson Imaging Clin N Am. 2004;12:545–55.

    Article  PubMed  Google Scholar 

  51. Saenz A, Mandal R, Kradin R, Hedley-Whyte ET. Nephrogenic fibrosing dermopathy with involvement of the dura mater. Virchows Arch. 2006;449:389–91.

    Article  PubMed  Google Scholar 

  52. Mendoza FA, Artlett CM, Sandorfi N, et al. Description of 12 cases of nephrogenic fibrosing dermopathy and review of the literature. Semin Arthritis Rheum. 2006;35:238–49.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Perez-Rodriguez J, Lai S, Ehst BD, et al. Nephrogenic systemic fibrosis: incidence, associations, and effect of risk factor assessment – report of 33 cases. Radiology. 2009;250:371–7.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Gadolinium based contrast media and Nephrogenic systemic fibrosis. The Royal College of Radiologists, Board of the Faculty of Clinical Radiology. November 2007. http://www.rcr.ac.uk/docs/radiology/pdf/BFCR0714_Gadolinium_NSF_guidanceNov07.pdf. Last accessed on 31 Oct 2013.

  55. Rominger MB, Kenney PJ, Morgan DE, et al. Gadolinium-enhanced MR imaging of renal masses. Radiographics. 1992;12(6):1097–116.

    Article  CAS  PubMed  Google Scholar 

  56. Korobkin M, Lombardi TJ, Aisen AM, et al. Characterization of adrenal masses with chemical shift and gadolinium-enhanced MR imaging. Radiology. 1995;197(2):411–8.

    Article  CAS  PubMed  Google Scholar 

  57. Heiken JP, Forman HP, Brown JJ. Neoplasms of the bladder, prostate, and testis. Radiol Clin North Am. 1994;32(1):81–98.

    CAS  PubMed  Google Scholar 

  58. Huch Boni RA, Boner JA, Debatin JF, et al. Optimization of prostate carcinoma staging: comparison of imaging and clinical methods. Clin Radiol. 1995;50(9):593–600.

    Article  CAS  PubMed  Google Scholar 

  59. White S, Hricak H, Forstner R, et al. Prostate cancer: effect of postbiopsy hemorrhage on interpretation of MR images. Radiology. 1995;195(2):385–90.

    Article  CAS  PubMed  Google Scholar 

  60. Beyersdorff D, Taupitz M, Winkelmann B, et al. Patients with a history of elevated prostate-specific antigen levels and negative transrectal US-guided quadrant or sextant biopsy results: value of MR imaging. Radiology. 2002;224(3):701–6.

    Article  PubMed  Google Scholar 

  61. Yu KK, Hricak H, Alagappan R, et al. Detection of extracapsular extension of prostate carcinoma with endorectal and phased-array coil MR imaging: multivariate feature analysis. Radiology. 1997;202(3):697–702.

    Article  CAS  PubMed  Google Scholar 

  62. Yu KK, Scheidler J, Hricak H, et al. Prostate cancer: prediction of extracapsular extension with endorectal MR imaging and three-dimensional proton MR spectroscopic imaging. Radiology. 1999;213(2):481–8.

    Article  CAS  PubMed  Google Scholar 

  63. Haider MA, van der Kwast TH, Tanguay J, Evans AJ, Hashmi AT, Lockwood G, Trachtenberg J. Combined T2-weighted and diffusion-weighted MRI for localization of prostate cancer. AJR Am J Roentgenol. 2007;189(2):323–8.

    Article  PubMed  Google Scholar 

  64. desouza NM, Reinsberg SA, Scurr ED, Brewster JM, Payne GS. Magnetic resonance imaging in prostate cancer: the value of apparent diffusion coefficients for identifying malignant nodules. Br J Radiol. 2007;80(950):90–5. Epub 2007 Feb 15.

    Article  CAS  PubMed  Google Scholar 

  65. Engelbrecht MR, Huisman HJ, Laheij RJ, Jager GJ, van Leenders GJ, Hulsbergen-Van De Kaa CA, et al. Discrimination of prostate cancer from normal peripheral zone and central gland tissue by using dynamic contrast-enhanced MR imaging. Radiology. 2003;229(1):248–54. Epub 2003 Aug 27.

    Article  PubMed  Google Scholar 

  66. Claus FG, Hricak H, Hattery RR. Pretreatment evaluation of prostate cancer: role of MR imaging and 1H MR spectroscopy. Radiographics. 2004;24 Suppl 1:S167–80.

    Article  PubMed  Google Scholar 

  67. Rajesh A, Coakley FV. MR imaging and MR spectroscopic imaging of prostate cancer. Magn Reson Imaging Clin N Am. 2004;12(3):557–79.

    Article  PubMed  Google Scholar 

  68. Zakian KL, Sircar K, Hricak H, Chen HN, Shukla-Dave A, Eberhardt S, et al. Correlation of proton MR spectroscopic imaging with gleason score based on step-section pathologic analysis after radical prostatectomy. Radiology. 2005;234(3):804–14.

    Article  PubMed  Google Scholar 

  69. Pinto PA, Chung PH, Rastinehad AR, Baccala Jr AA, Kruecker J, Benjamin CJ, et al. Magnetic resonance imaging/ultrasound fusion guided prostate biopsy improves cancer detection following transrectal ultrasound biopsy and correlates with multiparametric magnetic resonance imaging. J Urol. 2011;186(4):1281–5. Epub 2011 Aug 17.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Hricak H, Thoeni RF, Carroll PR, et al. Detection and staging of renal neoplasms: a reassessment of MR imaging. Radiology. 1988;166(3):643–9.

    Article  CAS  PubMed  Google Scholar 

  71. Aslam Sohaib SA, Teh J, Nargund VH, et al. Assessment of tumor invasion of the vena caval wall in renal cell carcinoma cases by magnetic resonance imaging. J Urol. 2002;167(3):1271–5.

    Article  CAS  PubMed  Google Scholar 

  72. Myneni L, Hricak H, Carroll PR. Magnetic resonance imaging of renal carcinoma with extension into the vena cava: staging accuracy and recent advances. Br J Urol. 1991;68:571–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shirish G. Prabhudesai MBBS, MS, MRCS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Prabhudesai, S.G., Jacques, A.E.T., Sahdev, A. (2015). Non-Interventional Imaging in Genitourinary Cancer. In: Nargund, V., Raghavan, D., Sandler, H. (eds) Urological Oncology. Springer, London. https://doi.org/10.1007/978-0-85729-482-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-482-1_5

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-481-4

  • Online ISBN: 978-0-85729-482-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics