Skip to main content

Principles of Chemotherapy for Genitourinary Cancer

  • Chapter
  • First Online:
Urological Oncology

Abstract

Significant progress has been made in developing systemic treatment, including cytotoxic chemotherapy and targeted therapeutics for patients with cancers of the genitourinary system. Improvement in outcomes has been predicated on improved understanding of the cell cycle and its regulators, the relevance of the cancer genome to growth regulation of cancer, and alterations in chemical structures to produce less toxic or more effective agents. The pharmacology of anticancer agents is intimately associated with efficacy and toxicity. The properties of the various classes of anticancer agents are reviewed, in association with their interactions with a range of growth regulators and inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tannock IF. Cell kinetics and chemotherapy. A critical review. Cancer Treat Rep. 1978;62:1117–33.

    CAS  PubMed  Google Scholar 

  2. Young RC, De Vita VT. Cell cycle characteristics of human solid tumors in vivo. Cell Tissue Kinet. 1970;3:285–90.

    CAS  PubMed  Google Scholar 

  3. Cerqueira A, Santamaria D, Martinez-Pastor B, et al. Overall Cdk activity modulates the DNA damage response in mammalian cells. J Cell Biol. 2009;187:773–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Alberts DS. A unifying vision of cancer therapy for the 21st century. J Clin Oncol. 1999;17(11 Suppl):13–21.

    CAS  PubMed  Google Scholar 

  5. Skipper HE, Schabel Jr FM, Wilcox WS. Experimental evaluation of potential anticancer agents XII: on the criteria and kinetics associated with “curability of leukemia”. Cancer Chemother Rep. 1964;35:1–111.

    CAS  PubMed  Google Scholar 

  6. Schnipper L. Clinical implications of tumor-cell heterogeneity. N Engl J Med. 1986;314:1423–31.

    Article  CAS  PubMed  Google Scholar 

  7. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.

    Article  CAS  PubMed  Google Scholar 

  8. Tubiana M. Tumor cell proliferation kinetics and tumor growth rate. Acta Oncol. 1989;28:113–21.

    Article  CAS  PubMed  Google Scholar 

  9. Brown JM, Giaccia AJ. The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res. 1998;58:1408–16.

    CAS  PubMed  Google Scholar 

  10. Nowell P. Mechanisms of tumor progression. Cancer Res. 1986;46:2203–7.

    CAS  PubMed  Google Scholar 

  11. Steel GG. The growth kinetics of tumors in relation to their therapeutic response. Laryngoscope. 1975;85:359–70.

    Google Scholar 

  12. Coldman AJ, Goldie JH. Impact of dose-intense chemotherapy on the development of permanent drug resistance. Semin Oncol. 1987;14(suppl):29–33.

    Google Scholar 

  13. Norton L, Simon R. The Norton-Simon hypothesis revisited. Cancer Treat Rep. 1986;70:163–9.

    CAS  PubMed  Google Scholar 

  14. Norton LA. A gompertzian model of human breast cancer growth. Cancer Res. 1988;48:7067–71.

    CAS  PubMed  Google Scholar 

  15. Newell DR, McLeod HL, Schellens JHM. The pharmacology of anticancer drugs. In: Souhami RL, Tannock I, Hohenberger PF, Horiot J-C, editors. Oxford textbook of oncology. 2nd ed. London/Oxford: Oxford University Press; 2002. p. 623–37.

    Google Scholar 

  16. Gurney H. Dose calculation of anticancer drugs: a review of the current practice and introduction of an alternative. J Clin Oncol. 1996;14:2590–611.

    CAS  PubMed  Google Scholar 

  17. Canal P, Chatelut E, Guichard S. Practical treatment guide for dose individualization in cancer chemotherapy. Drugs. 1998;56:1019–36.

    Article  CAS  PubMed  Google Scholar 

  18. Iyer L, Ratain MJ. Pharmacogenetics and cancer chemotherapy. Eur J Cancer. 1998;34:1493–9.

    Article  CAS  PubMed  Google Scholar 

  19. Ratain MJ, Schilisky RL, Conley BA, Egorin MJ. Pharmacodynamics in cancer therapy. J Clin Oncol. 1990;8:1739–53.

    CAS  PubMed  Google Scholar 

  20. Frei III E. Curative cancer chemotherapy. Cancer Res. 1985;45:6523–37.

    PubMed  Google Scholar 

  21. Krakoff IH. Systemic treatment of cancer. CA Cancer J Clin. 1996;46:134–41.

    Article  CAS  PubMed  Google Scholar 

  22. Endicott JA, Ling V. The biochemistry of P-glycoprotein mediated multidrug resistance. Annu Rev Biochem. 1989;58:137–71.

    Article  CAS  PubMed  Google Scholar 

  23. Goldstein LJ, Galski H, Fojo A, et al. Expression of multidrug resistance gene in human tumors. J Natl Cancer Inst. 1989;81:116–24.

    Article  CAS  PubMed  Google Scholar 

  24. Hickman JA. Apoptosis and chemotherapy resistance. Eur J Cancer. 1996;32A:921–6.

    Article  CAS  PubMed  Google Scholar 

  25. Schmitt CA, Lowe SW. Apoptosis and therapy. J Pathol. 1999;187:127–37.

    Article  CAS  PubMed  Google Scholar 

  26. Moolgavkar SH, Knudsen AG. Mutation and cancer: a model for human carcinogenesis. J Natl Cancer Inst. 1981;66:1037–52.

    CAS  PubMed  Google Scholar 

  27. Stoehlmacher J, Park DJ, Zhang W, et al. A multivariate analysis of genomic polymorphisms: prediction of clinical outcome to 5-FU/oxaliplatin combination chemotherapy in refractory colorectal cancer. Br J Cancer. 2004;91:344–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Pendyala L, Velagapudi S, Toth L, et al. Translational studies of glutathione in bladder cancer cell lines and human specimens. Clin Cancer Res. 1997;3:793–8.

    CAS  PubMed  Google Scholar 

  29. Fearon EC. Human cancer syndromes: clues to the origin and nature of cancer. Science. 1997;278:1043–58.

    Article  CAS  PubMed  Google Scholar 

  30. Sikic BL. Modulation of multidrug resistance: at the threshold. J Clin Oncol. 1993;11:1629–35.

    CAS  PubMed  Google Scholar 

  31. Shepard DR, Dreicer R, Garcia J, Elson P, Magi-Galluzzi C, Raghavan D, Stephenson AJ, Klein EA. Phase II trial of NAB-paclitaxel in high risk patients with prostate cancer undergoing radical prostatectomy. J Urol. 2009;181:1672–7.

    Article  CAS  PubMed  Google Scholar 

  32. Skipper HE. Critical variables in the design of combination chemotherapy regimens to be used alone or in adjuvant settings. Colloque INSERM. 1986;137:11.

    Google Scholar 

  33. Hyrniuk WM. Average relative dose intensity and the impact on design of clinical trials. Semin Oncol. 1987;14:65–74.

    Google Scholar 

  34. Day RS. Treatment sequencing, asymmetry and uncertainty: protocol strategies for combination chemotherapy. Cancer Res. 1986;46:3876–80.

    CAS  PubMed  Google Scholar 

  35. Schnipper L, Smith TJ, Raghavan D, Blayney DW, Ganz PA, Mulvey T, Wollins D. American Society of Clinical Oncology identifies 5 key opportunities to improve care and reduce costs. The top five list for oncology. J Clin Oncol. 2012;30:1715–34.

    Article  PubMed  Google Scholar 

  36. Raghavan D, Weiner JS, Lipson L. Cancer in the elderly. In: Souhami RL, Tannock I, Hohenberger PF, Horiot J-C, editors. Oxford textbook of oncology. 2nd ed. London/Oxford: Oxford University Press; 2002. p. 863–74.

    Google Scholar 

  37. Bolwell BJ. Factors predicting success or failure associated with common types of transplants. Pediatr Transplant. 2005;9:2–11.

    Article  PubMed  Google Scholar 

  38. Margolin K. High dose chemotherapy and stem cell support in the treatment of poor-risk germ cell cancer. In: Raghavan D, editor. American Cancer Society Atlas of Clinical Oncology – germ cell tumors. London/Hamilton: BC Decker Inc; 2003. p. 168–81.

    Google Scholar 

  39. Socie G, Stone JV, Wingard JR, et al. Long term survival and late deaths after allogeneic bone marrow transplantation. N Engl J Med. 1999;341:14–21.

    Article  CAS  PubMed  Google Scholar 

  40. Brown JR, Yeckes H, Friedberg JW, et al. Increasing incidence of late second malignancies after conditioning with cyclophosphamide and total body irradiation and autologous bone marrow transplantation for non-Hodgkin’s lymphoma. J Clin Oncol. 2005;23:2208–14.

    Article  CAS  PubMed  Google Scholar 

  41. Raghavan D. Editorial: Salvage or savage chemotherapy for poor risk or relapsed testis cancer – 20 years later, not much has changed. Ann Oncol. 2012;23:813–4.

    Article  CAS  PubMed  Google Scholar 

  42. Lorch A, Bascoul-Mollevi C, Kramar A, et al. Conventional-dose versus high-dose chemotherapy as first salvage treatment in male patients with metastatic germ cell tumors: evidence from a large international database. J Clin Oncol. 2011;29:2178–84.

    Article  PubMed  Google Scholar 

  43. Kalmadi S, Raghavan D. Fundamentals of cancer treatment – effects of chemotherapy on neoplastic cells. In: McLain R, editor. Current clinical oncology: cancer in the spine – comprehensive care. Totowa: Humana Press Inc; 2005. p. 31–42.

    Google Scholar 

  44. de Bono JS, Oudard S, Ozguroglu M, et al. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment : a randomized open-label trial. Lancet Oncol. 2010;376:1147–54.

    Article  Google Scholar 

  45. Schwartz GK, Shah MA. Targeting the cell cycle: a new approach to cancer therapy. J Clin Oncol. 2005;23:9408–21.

    Article  CAS  PubMed  Google Scholar 

  46. Bergsland EK. When does the presence of the target predict response to the targeted agent? J Clin Oncol. 2006;24:213–5.

    Article  CAS  PubMed  Google Scholar 

  47. Ferrara N. VEGF and the quest for tumor angiogenesis factors. Nat Rev Cancer. 2002;2:795–803.

    Article  CAS  PubMed  Google Scholar 

  48. Wedge SR, Kendrew J, Hennequin LF, et al. AZD2171: a highly potent, orally bioavailable, vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor for the treatment of cancer. Cancer Res. 2005;65:4389–400.

    Article  CAS  PubMed  Google Scholar 

  49. Kaelin Jr WG. The von Hippel-Lindau tumor suppressor protein and clear cell renal carcinoma. Clin Cancer Res. 2007;13:680.

    Article  Google Scholar 

  50. Escudier B, Eisen T, Stadler WM, et al. Sorafenib in advanced clear-cell renal cell carcinoma. N Engl J Med. 2007;356(2):125–34.

    Article  CAS  PubMed  Google Scholar 

  51. Escudier B, Eisen T, Stadler WM, et al. Sorafenib for treatment of renal cell carcinoma: final efficacy and safety results of the phase III treatment approaches in renal cancer global evaluation trial. J Clin Oncol. 2009;27:3312–8.

    Article  CAS  PubMed  Google Scholar 

  52. Motzer RJ, Hutson TE, Tomczak P, et al. Sunitinib versus interferon alfa in metastatic renal cell carcinoma. N Engl J Med. 2007;356:115–24.

    Article  CAS  PubMed  Google Scholar 

  53. Motzer RJ, Hutson TE, Tomczak P, et al. Overall survival and updated results for sunitinib compared with interferon alfa in patients with metastatic renal cell carcinoma. J Clin Oncol. 2009;27:3584–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Rini BI, Escudier B, Tomczak P, et al. Comparative effectiveness of axitinib versus sorafenib in advanced renal cell carcinoma (AXIS): a randomised phase 3 trial. Lancet. 2011;378:1931–9.

    Article  CAS  PubMed  Google Scholar 

  55. Sternberg CN, Davis ID, Mardiak J, et al. Pazopanib in locally advanced or metastatic renal cell carcinoma: results of a randomized phase III trial. J Clin Oncol. 2010;28:1061–8.

    Article  CAS  PubMed  Google Scholar 

  56. Motzer RJ, Hutson TE, Cella D, et al. Pazopanib versus sunitinib in metastatic renal-cell carcinoma. N Engl J Med. 2013;369:722–31.

    Google Scholar 

  57. Escudier B, Pluzanska A, Koralewski P, et al. Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomized, double-blind phase III trial. Lancet. 2007;370(9605):2103–11.

    Article  PubMed  Google Scholar 

  58. Rini BI, Halabi S, Rosenberg JE, et al. Bevacizumab plus interferon alfa compared with interferon alfa monotherapy in patients with metastatic renal cell carcinoma: CALGB 90206. J Clin Oncol. 2008;26(33):5422–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Hudes G, Carducci M, Tomczak P, et al. Temsirolimus, interferon alfa, or both for advanced renal cell carcinoma. N Engl J Med. 2007;356:2271–81.

    Article  CAS  PubMed  Google Scholar 

  60. Motzer RJ, Escudier B, Oudard S, et al. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomized, placebo-controlled phase III trial. Lancet. 2008;372:449–56.

    Article  CAS  PubMed  Google Scholar 

  61. Motzer RJ, Escudier B, Oudard S, et al. Phase 3 trial of everolimus for metastatic renal cell carcinoma: final results and analysis of prognostic factors. Cancer. 2010;116:4256–65.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek Raghavan MD, PhD, FRACP, FACP, FASCO .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Frenette, G., Raghavan, D. (2015). Principles of Chemotherapy for Genitourinary Cancer. In: Nargund, V., Raghavan, D., Sandler, H. (eds) Urological Oncology. Springer, London. https://doi.org/10.1007/978-0-85729-482-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-482-1_13

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-481-4

  • Online ISBN: 978-0-85729-482-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics