Advertisement

Incremental and Adaptive Learning for Interactive Machine Translation

  • Alejandro Héctor Toselli
  • Enrique Vidal
  • Francisco Casacuberta

Abstract

High-quality translation between any pair of languages can be achieved by human post-editing of the outputs of a MT system or, as mentioned in Chap.  6, by following the Interactive Machine Translation (IMT) approach. In the interactive pattern recognition framework, IMT can predict the translation of the next words in the output, and can suggest them to the human translator who, iteratively, can accept or correct the suggested translations. The consolidated translations obtained through the successive steps of the interaction process can be considered as “perfect translations” due to the fact that they have been validated by a human expert. Therefore, this consolidated translations can easily be converted into new, fresh, training data, useful for dynamically adapting the system to the changing environment. Taking that into account, on the one hand, the IMT paradigm offers an appropriate framework for incremental and adaptive learning in SMT. On the other hand, incremental and adaptive learning offers the possibility to substantially save human effort by simply avoiding the user to perform the same corrections again and again.

Keywords

Online Learning Translation Model Sentence Pair Word Alignment Source Sentence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Arun, A., & Koehn, P. (2007). Online learning methods for discriminative training of phrase based statistical machine translation. In Proceedings of the machine translation summit XII (MT Summit 07) (pp. 15–20), Copenhagen, Denmark. Google Scholar
  2. 2.
    Bertoldi, N., & Federico, M. (2009). Domain adaptation for statistical machine translation with monolingual resources. In Proceedings of the EACL 09 fourth workshop on statistical machine translation (WSMT 09) (pp. 182–189), Athens, Greece. CrossRefGoogle Scholar
  3. 3.
    Brown, P. F., Pietra, S. A. D., Pietra, V. J. D., & Mercer, R. L. (1993). The mathematics of statistical machine translation: Parameter estimation. Computational Linguistics, 19(2), 263–310. Google Scholar
  4. 4.
    Callison-burch, C., Bannard, C., & Schroeder, J. (2004). Improving statistical translation through editing. In Proceedings of the 9th EAMT workshop broadening horizons of machine translation and its applications, Malta. Google Scholar
  5. 5.
    Cesa-Bianchi, N., Reverberi, G., & Szedmak, S. (2008). Online learning algorithms for computer-assisted translation. Deliverable D4.2, SMART: Statistical Multilingual Analysis for Retrieval and Translation. Google Scholar
  6. 6.
    Chiang, D., Marton, Y., & Resnik, P. (2008). Online large-margin training of syntactic and structural translation features. In Proceedings of the conference on empirical methods in natural language processing (EMNLP 08) (pp. 224–233), Honolulu, Hawaii. CrossRefGoogle Scholar
  7. 7.
    Civera, J., et al. (2004). A syntactic pattern recognition approach to computer assisted translation. In A. Fred, T. Caelli, A. Campilho, R. P. Duin, & D. de Ridder (Eds.), Lecture notes in computer science. Advances in statistical, structural and syntactical pattern recognition (pp. 207–215). Berlin: Springer. CrossRefGoogle Scholar
  8. 8.
    Knuth, D. E. (1981). Seminumerical algorithms: Vol. 2. The art of computer programming (2nd ed.). Reading: Addison-Wesley. MATHGoogle Scholar
  9. 9.
    Koehn, P., & Schroeder, J. (2007). Experiments in domain adaptation for statistical machine translation. In Proceedings of the ACL 2007 second workshop on statistical machine translation (WSMT 07) (pp. 224–227), Prague, Czech Republic. CrossRefGoogle Scholar
  10. 10.
    Koehn, P., Och, F. J., & Marcu, D. (2003). Statistical phrase-based translation. In Proceedings of the human language technology and North American association for computational linguistics conference (HLT/NAACL 03) (pp. 48–54), Edmonton, Canada. Google Scholar
  11. 11.
    Liang, P., Bouchard-Côté, A., Klein, D., & Taskar, B. (2006). An end-to-end discriminative approach to machine translation. In Proceedings of the joint international conference on computational linguistics and association of computational linguistics (COLING/ACL 06) (pp. 761–768), Sydney, Australia. Google Scholar
  12. 12.
    Neal, R. M., & Hinton, G. E. (1998). A view of the EM algorithm that justifies incremental, sparse, and other variants. In Learning in graphical models (pp. 355–368). Dordrecht: Kluwer Academic. CrossRefGoogle Scholar
  13. 13.
    Nepveu, L., Lapalme, G., Langlais, P., & Foster, G. F. (2004). Adaptive language and translation models for interactive machine translation. In Proceedings of the conference on empirical methods in natural language processing (EMNLP 04) (pp. 190–197), Barcelona, Spain. Google Scholar
  14. 14.
    Ortiz-Martínez, D., García-Varea, I., & Casacuberta, F. (2008). The scaling problem in the pattern recognition approach to machine translation. Pattern Recognition Letters, 29, 1145–1153. CrossRefGoogle Scholar
  15. 15.
    Ortiz-Martínez, D., García-Varea, I., & Casacuberta, F. (2009). Interactive machine translation based on partial statistical phrase-based alignments. In Proceedings of the international conference recent advances in natural language processing (RANLP 09) (pp. 330–336), Borovets, Bulgaria. Google Scholar
  16. 16.
    Ortiz-Martínez, D., García-Varea, I., & Casacuberta, F. (2010). Online learning for interactive statistical machine translation. In Proceedings of the 11th annual conference of the North American chapter of the association for computational linguistics (NAACL 10) (pp. 546–554), Los Angeles, USA. Google Scholar
  17. 17.
    Sanchis, G., & Casacuberta, F. (2010). Bayesian adaptation for statistical machine translation. In Proceedings of the 23rd international conference on computational linguistics (COLING 10) (pp. 1077–1085), Beijing, China. Google Scholar
  18. 18.
    Sanchis-Trilles, G., & Cettolo, M. (2010). Online language model adaptation via n-gram mixtures for statistical machine translation. In Proceedings of the conference of the European association for machine translation (EAMT 10), Saint-Raphaël, France. Google Scholar
  19. 19.
    Vogel, S., Ney, H., & Tillmann, C. (1996). HMM-based word alignment in statistical translation. In Proceedings of the 16th international conference on computational linguistics (COLING 96) (pp. 836–841), Copenhagen, Denmark. CrossRefGoogle Scholar
  20. 20.
    Watanabe, T., Suzuki, J., Tsukada, H., & Isozaki, H. (2007). Online large-margin training for statistical machine translation. In Proceedings of the joint conference on empirical methods in natural language processing (EMNLP 07) and computational natural language learning (CoNLL 07) (pp. 764–773), Prague, Czech Republic. Google Scholar
  21. 21.
    Zhao, B., Eck, M., & Vogel, S. (2004). Language model adaptation for statistical machine translation with structured query models. In Proceedings of the international conference on computational linguistics (COLING 04) (pp. 411–417), Geneva, Switzerland. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Alejandro Héctor Toselli
    • Enrique Vidal
      • Francisco Casacuberta

        There are no affiliations available

        Personalised recommendations