Skip to main content

Abstract

In the Interactive Machine Translation (IMT) framework, a human translator can interact with the IMT system to achieve a high-quality translation. This is done by basic editing operations, i.e. substitution or deletion of erroneous words or insertion of missing words. This process is usually performed with the keyboard. While keyboard is considered as the principal way of introducing text to a computer, other modalities can provide useful information to improve IMT performance or to increase system ergonomics.

Examples of modalities that can improve performance are pointer interactions, which give implicit and explicit information that can be of great use to an IMT system. Additionally, the speech and handwritten text modalities are able to increase the system’s usability and ergonomics. This is specially true for the new kind of keyboard-less devices that are gaining popularity incredibly fast, as touch-screen tablets and mobile phones.

With Contribution Of: Vicent Alabau, Germán Sanchis-Trilles and Luis Rodríguez.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Real experiments for IMT-PREF and IMT-SEL would involve having real human translators interacting with the system, which is prohibitive for this study; not only for the high costs involved, but also because of the associated lack of experimentation flexibility.

References

  1. Berger, A. L., Pietra, S. A. D., & Pietra, V. J. D. (1996). A maximum entropy approach to natural language processing. Computational Linguistics, 22, 39–71.

    Google Scholar 

  2. Brousseau, J., Drouin, C., Foster, G., Isabelle, P., Kuhn, R., Normandin, Y., & Plamondon, P. (1995). French speech recognition in an automatic dictation system for translators: the TransTalk project. In Proceedings of the forth European conference on speech communication and technology (Eurospeech 95) (pp. 193–196), Madrid, Spain.

    Google Scholar 

  3. Brown, P. F., Chen, S. F., Pietra, S. A. D., Pietra, V. J. D., Kehler, A. S., & Mercer, R. L. (1994). Automatic speech recognition in machine aided translation. Computer Speech and Language, 8(3), 177–187.

    Article  Google Scholar 

  4. Dymetman, M., Brousseau, J., Foster, G., Isabelle, P., Normandin, Y., & Plamondon, P. (1994). Towards an automatic dictation system for translators: the TransTalk project. In Proceedings of the international conference on spoken language processing (ICSLP 94) (pp. 691–694).

    Google Scholar 

  5. Khadivi, S., Zolnay, A., & Ney, H. (2005). Automatic text dictation in computer-assisted translation. In Proceedings of the 9th European conference on speech communication and technology (Interspeech 2005) (pp. 2265–2268), Portugal, Lisbon.

    Google Scholar 

  6. Moreno, A., Poch, D., Bonafonte, A., Lleida, E., Llisterri, J., Mariño, J. B., & Nadeu, C. (1993). Albayzin speech database: design of the phonetics corpus. In Proceedings of the third European conference on speech communication and technology (Eurospeech 93) (pp. 175–178), Berlin, Germany.

    Google Scholar 

  7. Och, F. J., & Ney, H. (2000). Improved statistical alignment models. In Proceedings of the 38th annual meeting of the association for computational linguistics (ACL 2000) (pp. 440–447), Hongkong, China.

    Google Scholar 

  8. Och, F. J., & Ney, H. (2002). Discriminative training and maximum entropy models for statistical machine translation. In Proceedings of 40th annual meeting of the association for computational linguistics (ACL 02) (pp. 295–302), Philadelphia, Pennsylvania, USA.

    Google Scholar 

  9. Ogawa, A., Takeda, K., & Itakura, F. (1998). Balancing acoustic and linguistic probabilities. In Proceedings of IEEE international conference on acoustics, speech and signal processing (ICASSP 98) (pp. 181–184), Seattle, WA, USA.

    Google Scholar 

  10. Papineni, K. A., Roukos, S., & Ward, T. (1998). Maximum likelihood and discriminative training of direct translation models. In Proceedings of IEEE international conference on acoustics, speech and signal processing (ICASSP 98) (pp. 189–192), Seattle, WA, USA.

    Google Scholar 

  11. Paulik, M., Stüker, S., & Fügen, C. (2006). Speech recognition in human mediated translation scenarios. In Proceedings of 2006 IEEE Mediterranean electrotechnical conference (MELECON 06) (pp. 1232–1235), Benalmádena, Málaga.

    Chapter  Google Scholar 

  12. Reddy, A., & Rose, R. (2008). Towards domain independence in machine aided human translation. In Proceedings of the 9th annual conference of the international speech communication association (Interspeech 08) (pp. 2358–2361), Brisbane, Australia.

    Google Scholar 

  13. Reddy, A., & Rose, R. (2010). Integration of statistical models for dictation of document translations in a machine-aided human translation task. IEEE Transactions on Audio, Speech, and Language Processing, 18(8), 2015–2027.

    Article  Google Scholar 

  14. Reddy, A., Rose, R., & Désilets, A. (2007). Integration of asr and machine translation models in a document translation task. In Proceedings of the 10th European conference on speech communication and technology (Interspeech 07) (pp. 2457–2460), Antwerp, Belgium.

    Google Scholar 

  15. Sanchis-Trilles, G., González, M. T., Casacuberta, F., Vidal, E., & Civera, J. (2008). Introducing additional input information into IMT systems. In Lecture notes in computer sciences: Vol. 5237. Proceedings of the 5th joint workshop on multimodal interaction and related machine learning algorithms (pp. 284–295), Utrecht, The Netherlands.

    Chapter  Google Scholar 

  16. Sanchis-Trilles, G., Ortiz-Martínez, D., Casacuberta, J. C. F., Vidal, E., & Hoang, H. (2008). Improving interactive machine translation via mouse actions. In Proceedings of the conference on empirical methods for natural language processing (EMNLP 08) (pp. 485–494), Waikiki, Honolulu, Hawaii.

    Chapter  Google Scholar 

  17. Vidal, E., Casacuberta, F., Rodríguez, L., Civera, J., & Martínez, C. D. (2006). Computer-assisted translation using speech recognition. IEEE Transactions on Speech and Audio Processing, 14(3), 941–951.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Héctor Toselli .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Toselli, A.H., Vidal, E., Casacuberta, F. (2011). Multi-Modality for Interactive Machine Translation. In: Multimodal Interactive Pattern Recognition and Applications. Springer, London. https://doi.org/10.1007/978-0-85729-479-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-479-1_7

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-478-4

  • Online ISBN: 978-0-85729-479-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics