Advertisement

Multi-Modality for Interactive Machine Translation

  • Alejandro Héctor Toselli
  • Enrique Vidal
  • Francisco Casacuberta

Abstract

In the Interactive Machine Translation (IMT) framework, a human translator can interact with the IMT system to achieve a high-quality translation. This is done by basic editing operations, i.e. substitution or deletion of erroneous words or insertion of missing words. This process is usually performed with the keyboard. While keyboard is considered as the principal way of introducing text to a computer, other modalities can provide useful information to improve IMT performance or to increase system ergonomics.

Examples of modalities that can improve performance are pointer interactions, which give implicit and explicit information that can be of great use to an IMT system. Additionally, the speech and handwritten text modalities are able to increase the system’s usability and ergonomics. This is specially true for the new kind of keyboard-less devices that are gaining popularity incredibly fast, as touch-screen tablets and mobile phones.

Keywords

Speech Recognition Language Model Pointer Action Target Sentence Source Text 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Berger, A. L., Pietra, S. A. D., & Pietra, V. J. D. (1996). A maximum entropy approach to natural language processing. Computational Linguistics, 22, 39–71. Google Scholar
  2. 2.
    Brousseau, J., Drouin, C., Foster, G., Isabelle, P., Kuhn, R., Normandin, Y., & Plamondon, P. (1995). French speech recognition in an automatic dictation system for translators: the TransTalk project. In Proceedings of the forth European conference on speech communication and technology (Eurospeech 95) (pp. 193–196), Madrid, Spain. Google Scholar
  3. 3.
    Brown, P. F., Chen, S. F., Pietra, S. A. D., Pietra, V. J. D., Kehler, A. S., & Mercer, R. L. (1994). Automatic speech recognition in machine aided translation. Computer Speech and Language, 8(3), 177–187. CrossRefGoogle Scholar
  4. 4.
    Dymetman, M., Brousseau, J., Foster, G., Isabelle, P., Normandin, Y., & Plamondon, P. (1994). Towards an automatic dictation system for translators: the TransTalk project. In Proceedings of the international conference on spoken language processing (ICSLP 94) (pp. 691–694). Google Scholar
  5. 5.
    Khadivi, S., Zolnay, A., & Ney, H. (2005). Automatic text dictation in computer-assisted translation. In Proceedings of the 9th European conference on speech communication and technology (Interspeech 2005) (pp. 2265–2268), Portugal, Lisbon. Google Scholar
  6. 6.
    Moreno, A., Poch, D., Bonafonte, A., Lleida, E., Llisterri, J., Mariño, J. B., & Nadeu, C. (1993). Albayzin speech database: design of the phonetics corpus. In Proceedings of the third European conference on speech communication and technology (Eurospeech 93) (pp. 175–178), Berlin, Germany. Google Scholar
  7. 7.
    Och, F. J., & Ney, H. (2000). Improved statistical alignment models. In Proceedings of the 38th annual meeting of the association for computational linguistics (ACL 2000) (pp. 440–447), Hongkong, China. Google Scholar
  8. 8.
    Och, F. J., & Ney, H. (2002). Discriminative training and maximum entropy models for statistical machine translation. In Proceedings of 40th annual meeting of the association for computational linguistics (ACL 02) (pp. 295–302), Philadelphia, Pennsylvania, USA. Google Scholar
  9. 9.
    Ogawa, A., Takeda, K., & Itakura, F. (1998). Balancing acoustic and linguistic probabilities. In Proceedings of IEEE international conference on acoustics, speech and signal processing (ICASSP 98) (pp. 181–184), Seattle, WA, USA. Google Scholar
  10. 10.
    Papineni, K. A., Roukos, S., & Ward, T. (1998). Maximum likelihood and discriminative training of direct translation models. In Proceedings of IEEE international conference on acoustics, speech and signal processing (ICASSP 98) (pp. 189–192), Seattle, WA, USA. Google Scholar
  11. 11.
    Paulik, M., Stüker, S., & Fügen, C. (2006). Speech recognition in human mediated translation scenarios. In Proceedings of 2006 IEEE Mediterranean electrotechnical conference (MELECON 06) (pp. 1232–1235), Benalmádena, Málaga. CrossRefGoogle Scholar
  12. 12.
    Reddy, A., & Rose, R. (2008). Towards domain independence in machine aided human translation. In Proceedings of the 9th annual conference of the international speech communication association (Interspeech 08) (pp. 2358–2361), Brisbane, Australia. Google Scholar
  13. 13.
    Reddy, A., & Rose, R. (2010). Integration of statistical models for dictation of document translations in a machine-aided human translation task. IEEE Transactions on Audio, Speech, and Language Processing, 18(8), 2015–2027. CrossRefGoogle Scholar
  14. 14.
    Reddy, A., Rose, R., & Désilets, A. (2007). Integration of asr and machine translation models in a document translation task. In Proceedings of the 10th European conference on speech communication and technology (Interspeech 07) (pp. 2457–2460), Antwerp, Belgium. Google Scholar
  15. 15.
    Sanchis-Trilles, G., González, M. T., Casacuberta, F., Vidal, E., & Civera, J. (2008). Introducing additional input information into IMT systems. In Lecture notes in computer sciences: Vol. 5237. Proceedings of the 5th joint workshop on multimodal interaction and related machine learning algorithms (pp. 284–295), Utrecht, The Netherlands. CrossRefGoogle Scholar
  16. 16.
    Sanchis-Trilles, G., Ortiz-Martínez, D., Casacuberta, J. C. F., Vidal, E., & Hoang, H. (2008). Improving interactive machine translation via mouse actions. In Proceedings of the conference on empirical methods for natural language processing (EMNLP 08) (pp. 485–494), Waikiki, Honolulu, Hawaii. CrossRefGoogle Scholar
  17. 17.
    Vidal, E., Casacuberta, F., Rodríguez, L., Civera, J., & Martínez, C. D. (2006). Computer-assisted translation using speech recognition. IEEE Transactions on Speech and Audio Processing, 14(3), 941–951. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Alejandro Héctor Toselli
    • 1
  • Enrique Vidal
    • 1
  • Francisco Casacuberta
    • 1
  1. 1.Instituto Tecnológico de InformáticaUniversidad Politécnica de ValenciaValenciaSpain

Personalised recommendations