Skip to main content

Human Grasp Prediction and Analysis

  • Chapter
  • First Online:
  • 2003 Accesses

Part of the book series: Springer Series in Reliability Engineering ((RELIABILITY))

Abstract

Given that one of the critical motivations for using virtual humans is to simulate the interaction between humans and products, and given that using one’s hands are a primary means for interaction, then simulating human hands is arguably one of the most important elements of digital human modeling (DHM). Consequently, there is much research and development in this area, ranging from basic model development to detailed simulations of specific joints and tendons. However, when considering hand simulation and analysis within the context of a complete high-level DHM, the culmination of hand-related capabilities is grasping prediction. Thus, the focus of this chapter is on postural simulation and analysis capabilities of the overall hand as a component of a complete high-level DHM, with an eye toward grasping prediction. Within this context, the fundamental necessary elements one must consider when modeling the hand are highlighted. The intent is to provide general guidelines for creating computational models of hands and to present novel modeling and simulation techniques.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Goussous F, Marler T, Abdel-Malek K (2009) A new methodology for human grasp prediction. IEEE Trans Syst Man Cybern Part A Syst Humans 39(2):369–380

    Article  Google Scholar 

  2. Carenzi F, Gorce P, Burnod Y, Maier M (2005) Using generic neural networks in the control and prediction of grasp postures. The European symposium on artificial neural networks, Bruges

    Google Scholar 

  3. Sanso RM, Thalmann D (1994) A hand control and automatic grasping system for synthetic actors. Proceedings of EUROGRAPHICS’94, vol 13, pp C168–C177

    Google Scholar 

  4. Miller A, Knoop S, Christensen H, Allen P (2003) Automatic grasp planning using shape primitives. IEEE Int Conf Robot Autom, ICRA’03, vol 2, pp 1824–1829

    Google Scholar 

  5. Rijpkema H, Girard M (1991) Computer animation of knowledge-based grasping. Proc ACM SIGGRAPH’91 25(4):339–348

    Google Scholar 

  6. Tomovic R, Bekey G, Karplus W (1987) A strategy for grasp synthesis with multifingered robot hands. Proc IEEE Int Conf Robot Autom 4:83–89

    Google Scholar 

  7. Xue Z, Kasper A, Zoellner JM, Dillmann R (2009) An automatic grasp planning system for service robots. Proceedings of the ICAR 2009 14th international conference on advanced robotics, Munich

    Google Scholar 

  8. Gorce P, Rezzoug N (2005) Grasping posture learning with noisy sensing information for a large scale of multifingered robotic systems. J Robot Syst 12:711–724

    Article  Google Scholar 

  9. Jagannathan S, Galan G (2004) Adaptive critic neural network based object grasping control using a three finger gripper. IEEE Trans Neural Netw 15(2):395–407

    Article  Google Scholar 

  10. Moussa M (2004) Combining expert neural networks using reinforcement feedback for learning primitive grasping behavior. IEEE Trans Neural Netw 15(3):629–638

    Article  MathSciNet  Google Scholar 

  11. Taha Z, Brown R, Wright D (1997) Modeling and simulation of the hand grasping using neural networks. Med Eng Phys 19(6):536–538

    Article  Google Scholar 

  12. Pelossof R, Miller A, Allen P, Jebara T (2004) An SVM learning approach to robotic grasping. Proc IEEE Int Conf Robot Autom 4:3512–3518

    Google Scholar 

  13. Ferrari C, Canny J (1992) Planning optimal grasps. Proceedings of the 1992 IEEE international conference on robotics and automation, Nice

    Google Scholar 

  14. Katada Y, Svinin M, Matsumura Y, Ohkura K, Ueda K (2001) Optimization of stable grasps by evolutionary programming. Proceedings of the 32nd international symposium on robotics, pp 1503–1508

    Google Scholar 

  15. Kim B, Yi B, Oh S, Suh I (2004) Non-dimensionalized performance indices based optimal grasping for multi-fingered robot hands. Mechatronics 14(3):255–280

    Article  Google Scholar 

  16. Li Y, Pollard N (2005) A shape matching algorithm for synthesizing humanlike enveloping grasps. IEEE-RAS international conference on humanoid robots (Humanoids 2005)

    Google Scholar 

  17. Liu G, Xu J, Wang X, Li Z (2004) On quality functions for grasp synthesis, fixture planning and coordinated manipulation. IEEE Trans Autom Sci Eng 1(2):146–162

    Article  Google Scholar 

  18. Borst C, Fischer M, Hirzinger G (1999) A fast and robust grasp planner for arbitrary 3-D objects. Proceedings of the IEEE international conference on robotics and automation, Detroit, May

    Google Scholar 

  19. Hester, R., Cetin, M., Kapoor, C., and Tesar, D. (1999), “A criteria-based approach to grasp synthesis”, Proceedings of the 1999 IEEE International Conference on Robotics and Automation, Detroit, Michigan

    Google Scholar 

  20. Toth E (1999) Stable object grasping with dexterous hand in three dimensions. Periodica Polytechnica SER EL. ENG 43(3):207–214

    Google Scholar 

  21. Berenson D, Kuffner J, Choset H (2008) An optimization approach to planning for mobile manipulation. Proceedings of the IEEE international conference on robotics and automation, Pasadena, May

    Google Scholar 

  22. Fernandez J, Walker I (1998) Biologically inspired robot grasping using genetic programming. Proceedings of the 1998 IEEE international conference on robotics and automation, Leuven

    Google Scholar 

  23. Globisch R (2005) Automated grasping for articulated structures using evolutionary learning algorithms. Master’s thesis, University of Johannesburg, South Africa, April 2005

    Google Scholar 

  24. ElKoura G, Singh K (2003) Handrix: animating the human hand. In: ACM SIGGRAPH/Eurographics symposium on computer animation, 2003

    Google Scholar 

  25. Ehrenmann M, Rogalla O, Zollner R, Dillmann R (2001) Teaching service robots complex tasks: programming by demonstration for workshop and household environments. Proceedings of the 2001 international conference on field and service robots, vol 1, Helsinki, pp 397–402

    Google Scholar 

  26. Bohg J, Kragic D (2009) Learning grasping points with shape context. Robot Auton Syst 58(4):362–377

    Article  Google Scholar 

  27. Miyata N, Kouchi M, Mochimaru M (2006) Posture estimation for screening design alternatives by DhaibaHand—cell phone operation. Proceedings of the SAE 2006 digital human modeling for design and engineering conference, 2006-01-2327

    Google Scholar 

  28. Aleotti J, Caselli S (2006) Grasp recognition in virtual reality for robot pregrasp planning by demonstration. Proceedings of the 2006 IEEE international conference on robotics and automation, Orlando

    Google Scholar 

  29. Abdel-Malek K, Arora J, Yang J, Marler T, Beck S, Kim J, Swan C, Frey-Law L, Kim J, Bhatt R, Mathai A, Murphy C, Rahmatalla S, Patrick A, Obusek J (2009) A physics-based digital human model. Int J Veh Des 51(3/4):324–340

    Article  Google Scholar 

  30. Marler T, Arora J, Beck S, Lu J, Mathai A, Patrick A, Swan C (2008) Computational approaches in DHM. In: Duffy VG (ed) Handbook of digital human modeling for human factors, ergonomics. Taylor and Francis Press, London

    Google Scholar 

  31. Yang J, Kim JH, Abdel-Malek K, Marler T, Beck S, Kopp GR (2007) A new digital human environment and assessment of vehicle interior design. Comput-Aided Des 39:548–558

    Article  Google Scholar 

  32. Denavit J, Hartenberg RS (1955) A kinematic notation for lower-pair mechanisms based on matrices. J Appl Mech 22:215–221

    MathSciNet  MATH  Google Scholar 

  33. Pena-Pitarch E, Yang J, Abdel-Malek K (2005) SANTOS™ Hand: a 25 degree-of-freedom model. SAE International, Iowa City, June 14–16, 2005-01-2727 DHM

    Google Scholar 

  34. Liu Q, Marler T, Yang J, Kim J, Harrison C (2009) Posture prediction with external loads—a pilot study. SAE Int J Passeng Cars Mech Syst 2(1):1014–1023

    Google Scholar 

  35. Marler RT, Arora JS, Yang J, Kim H–J, Abdel-Malek K (2009) Use of multi-objective optimization for digital human posture prediction. Eng Optim 41(10):295–943

    Article  MathSciNet  Google Scholar 

  36. Marler T, Yang J, Rahmatalla S, Abdel-Malek K, Harrison C (2007) Validation methodology development for predicted posture. SAE digital human modeling conference, June, Seattle, Society of Automotive Engineers, Warrendale

    Google Scholar 

  37. Gill P, Murray W, Saunders A (2002) SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM J Optim 12(4):979–1006

    Article  MathSciNet  MATH  Google Scholar 

  38. Rmstrong TJ, Chaffin DB (1978) An investigation of the relationship between displacements of the finger and wrist joints and the extrinsic finger flexor tendons. Biomechanics 11:119–128

    Article  Google Scholar 

  39. Johnson R, Smith BL, Penmatsa R, Marler T, Abdel-Malek K (2009) Real-time obstacle avoidance for posture prediction. SAE digital human modeling conference, June, Goteborg, Society of Automotive Engineers, Warrendale

    Google Scholar 

  40. Johnson R, Fruehan C, Schikore M, Marler T, Abdel-Malek K (2010) New developments with collision avoidance for posture prediction. 3rd international conference on applied human factors and ergonomics, July, Miami

    Google Scholar 

  41. Yang J, Verma U, Penmatsa R, Marler T, Beck S, Rahmatalla S, Abdel-Malek K, Harrison C (2008) Development of a zone differentiation tool for visualization of postural comfort. SAE 2008 World Congress, April, Detroit, Society of Automotive Engineers, Warrendale

    Google Scholar 

  42. Yang J, Verma U, Marler T, Beck S, Rahmatalla S, Harrison C (2009) Workspace zone differentiation tool for visualization of seated postural comfort. Int J Ind Ergon 39:267–276

    Article  Google Scholar 

  43. Lorensen W, Cline H (1987) Marching cubes: a high resolution 3-D surface construction algorithm. Comput Graph (SIGRAPH 87 Proc) 21(4):163–170

    Article  Google Scholar 

  44. Napier J (1956) The prehensile movements of the human hand. J Bone Joint Surg 38B(4):902–913

    Google Scholar 

  45. Cutkosky MR (1989) On grasp choice, grasp models, and the design of hands for manufacturing tasks. IEEE Trans Robot Autom 5(3):269–279

    Article  MathSciNet  Google Scholar 

  46. Feix T, Pawlik R, Schmiedmayer H, Romero J, Kragic D (2009) The generation of a comprehensive grasp taxonomy. In: Robotics, science and systems conference: workshop on understanding the human hand for advancing robotic manipulation, June

    Google Scholar 

  47. Osada R, Funkhouser T, Chazelle B, Dobkin D (2002) Shape distributions. ACM Trans Graph 21(4):807–832

    Article  Google Scholar 

  48. Chen C, Hung Y, Cheng J (1997) RANSAC-based DARCES: a new approach to fast automatic registration of partially overlapping range images. Technical Report, Institute of Information Science, Academia Sinica, TR-IIS-97-019

    Google Scholar 

  49. Fischler M, Bolles R (1981) Random sample consensus: a paradigm for model fitting with applications to image analysis and cartography. Commun ACM 24(6):381–395

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Marler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Marler, T., Johnson, R., Goussous, F., Murphy, C., Beck, S., Abdel-Malek, K. (2011). Human Grasp Prediction and Analysis. In: Pham, H. (eds) Safety and Risk Modeling and Its Applications. Springer Series in Reliability Engineering. Springer, London. https://doi.org/10.1007/978-0-85729-470-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-470-8_14

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-469-2

  • Online ISBN: 978-0-85729-470-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics