Skip to main content

Radiation Oncology in Brain Cancer

  • Chapter
  • First Online:
  • 1173 Accesses

Abstract

Radiotherapy remains a central part of the treatment of most primary and secondary brain cancers and contributes significantly to long-term outcomes. Recent developments in radiotherapy technology are providing the opportunity to deliver more accurate, flexible, and individualized treatment in many contexts. This is possible through use of techniques including intensity-modulated radiotherapy, image guidance, and single- and multiple-dose radiosurgery. Current challenges include how best to evaluate the optimal application of these technologies in different patient groups. An additional issue is that an increasing proportion of brain cancer patients treated with radiotherapy is surviving long enough to be at risk of long-term toxicities which are still inadequately understood and difficult to treat.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rothkamm K, Lobrich M. Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proc Natl Acad Sci U S A. 2003;100(9):5057–62.

    Article  PubMed  CAS  Google Scholar 

  2. Olive PL, Banath JP. Phosphorylation of histone H2AX as a measure of radiosensitivity. Int J Radiat Oncol Biol Phys. 2004;58(2):331–5.

    Article  PubMed  CAS  Google Scholar 

  3. Short SC, et al. DNA repair after irradiation in glioma cells and normal human astrocytes. Neuro Oncol. 2007;9(4):404–11.

    Article  PubMed  CAS  Google Scholar 

  4. Short SC. Rad51 inhibition is an effective means of targeting DNA repair in glioma models and CD133+ tumor-derived cells. Neuro Oncol. 2011;13(5):487–99.

    Article  PubMed  CAS  Google Scholar 

  5. Salomoni P, Calabretta B. Targeted therapies and autophagy: new insights from chronic myeloid leukemia. Autophagy. 2009;5(7):1050–1.

    Article  PubMed  CAS  Google Scholar 

  6. Nandi S, et al. Low-dose radiation enhances survivin-mediated virotherapy against malignant glioma stem cells. Cancer Res. 2008;68(14):5778–84.

    Article  PubMed  CAS  Google Scholar 

  7. Stupp R, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96.

    Article  PubMed  CAS  Google Scholar 

  8. Stupp R, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10(5):459–66.

    Article  PubMed  CAS  Google Scholar 

  9. Chalmers AJ, et al. Cytotoxic effects of temozolomide and radiation are additive- and schedule-dependent. Int J Radiat Oncol Biol Phys. 2009;75(5):1511–9.

    Article  PubMed  CAS  Google Scholar 

  10. Powell C, et al. Somnolence syndrome in patients receiving radical radiotherapy for primary brain tumours: a prospective study. Radiother Oncol. 2011;100(1):131–6.

    Article  PubMed  Google Scholar 

  11. Minniti G, et al. Risk of second brain tumor after conservative surgery and radiotherapy for pituitary adenoma: update after an additional 10 years. J Clin Endocrinol Metab. 2005;90(2):800–4.

    Article  PubMed  CAS  Google Scholar 

  12. Brada M, et al. Risk of second brain tumour after conservative surgery and radiotherapy for pituitary adenoma. BMJ. 1992;304(6838):1343–6.

    Article  PubMed  CAS  Google Scholar 

  13. Otsuka S, et al. Depletion of neural precursor cells after local brain irradiation is due to radiation dose to the parenchyma, not the vasculature. Radiat Res. 2006;165(5):582–91.

    Article  PubMed  CAS  Google Scholar 

  14. Benczik J, et al. Late radiation effects in the dog brain: correlation of MRI and histological changes. Radiother Oncol. 2002;63(1):107–20.

    Article  PubMed  Google Scholar 

  15. Panagiotakos G, et al. Long-term impact of radiation on the stem cell and oligodendrocyte precursors in the brain. PLoS One. 2007;2(7):e588.

    Article  PubMed  Google Scholar 

  16. Marsh JC, et al. Sparing of the neural stem cell compartment during whole-brain radiation therapy: a dosimetric study using helical tomotherapy. Int J Radiat Oncol Biol Phys. 2010;78(3):946–54.

    Article  PubMed  Google Scholar 

  17. Chuba PJ, et al. Hyperbaric oxygen therapy for radiation-induced brain injury in children. Cancer. 1997;80(10):2005–12.

    Article  PubMed  CAS  Google Scholar 

  18. Gonzalez J, et al. Effect of bevacizumab on radiation necrosis of the brain. Int J Radiat Oncol Biol Phys. 2007;67(2):323–6.

    Article  PubMed  CAS  Google Scholar 

  19. Sherman JH, et al. Optic neuropathy in patients with glioblastoma receiving bevacizumab. Neurology. 2009;73(22):1924–6.

    Article  PubMed  CAS  Google Scholar 

  20. Truman JP, et al. Endothelial membrane remodeling is obligate for anti-angiogenic radiosensitization during tumor radiosurgery. PLoS One. 2010;5(8):e12310.

    Article  PubMed  Google Scholar 

  21. Baumert BG, et al. EORTC 22972–26991/MRC BR10 trial: fractionated stereotactic boost following conventional radiotherapy of high grade gliomas. Clinical and quality-assurance results of the stereotactic boost arm. Radiother Oncol. 2008;88(2):163–72.

    Article  PubMed  Google Scholar 

  22. Baumert BG, et al. Fractionated stereotactic radiotherapy boost after post-operative radiotherapy in patients with high-grade gliomas. Radiother Oncol. 2003;67(2):183–90.

    Article  PubMed  Google Scholar 

  23. Stall B, et al. Comparison of T2 and FLAIR imaging for target delineation in high grade gliomas. Radiat Oncol. 2010;5:5.

    Article  PubMed  Google Scholar 

  24. Narayana A, et al. Intensity-modulated radiotherapy in high-grade gliomas: clinical and dosimetric results. Int J Radiat Oncol Biol Phys. 2006;64(3):892–7.

    Article  PubMed  Google Scholar 

  25. Khoo VS, et al. Comparison of intensity-modulated tomotherapy with stereotactically guided conformal radiotherapy for brain tumors. Int J Radiat Oncol Biol Phys. 1999;45(2):415–25.

    Article  PubMed  CAS  Google Scholar 

  26. Laperriere N, Zuraw L, Cairncross G. Radiotherapy for newly diagnosed malignant glioma in adults: a systematic review. Radiother Oncol. 2002;64(3):259–73.

    Article  PubMed  Google Scholar 

  27. Donato V, et al. Elderly and poor prognosis patients with high grade glioma: hypofractionated radiotherapy. Clin Ter. 2007;158(3):227–30.

    PubMed  CAS  Google Scholar 

  28. Chinot OL. Should radiotherapy be standard therapy for brain tumors in the elderly? Cons. Semin Oncol. 2003;30(6 Suppl 19):68–71.

    Article  PubMed  Google Scholar 

  29. Rivera AL, et al. MGMT promoter methylation is predictive of response to radiotherapy and prognostic in the absence of adjuvant alkylating chemotherapy for glioblastoma. Neuro Oncol. 2010;12(2):116–21.

    Article  PubMed  CAS  Google Scholar 

  30. Chamberlain MC, et al. Concurrent cisplatin therapy and iodine 125 brachytherapy for recurrent malignant brain tumors. Arch Neurol. 1995;52(2):162–7.

    Article  PubMed  CAS  Google Scholar 

  31. Prados MD, et al. Interstitial brachytherapy for newly diagnosed patients with malignant gliomas: the UCSF experience. Int J Radiat Oncol Biol Phys. 1992;24(4):593–7.

    Article  PubMed  CAS  Google Scholar 

  32. Fulton DS, et al. Increasing radiation dose intensity using hyperfractionation in patients with malignant glioma. Final report of a prospective phase I-II dose response study. J Neurooncol. 1992;14(1):63–72.

    Article  PubMed  CAS  Google Scholar 

  33. Fulton DS, et al. Misonidazole combined with hyperfractionation in the management of malignant glioma. Int J Radiat Oncol Biol Phys. 1984;10(9):1709–12.

    Article  PubMed  CAS  Google Scholar 

  34. Combs SE, et al. Progostic significance of IDH-1 and MGMT in patients with glioblastoma:one step forward and one step back? Radiat Oncol. 2011;13(6):115.

    Article  Google Scholar 

  35. van den Bent MJ. Anaplastic oligodendroglioma and oligoastrocytoma. Neurol Clin. 2007;25(4):1089–109. ix-x.

    Article  PubMed  Google Scholar 

  36. Combs SE, et al. Recurrent low-grade gliomas: the role of fractionated stereotactic re-irradiation. J Neurooncol. 2005;71(3):319–23.

    Article  PubMed  CAS  Google Scholar 

  37. Grosu AL, et al. Reirradiation of recurrent high-grade gliomas using amino acid PET (SPECT)/CT/MRI image fusion to determine gross tumor volume for stereotactic fractionated radiotherapy. Int J Radiat Oncol Biol Phys. 2005;63(2):511–9.

    Article  PubMed  CAS  Google Scholar 

  38. van den Bent MJ. Can chemotherapy replace radiotherapy in low-grade gliomas? Time for randomized studies. Semin Oncol. 2003;30(6 Suppl 19):39–44.

    Article  PubMed  Google Scholar 

  39. Karim AB, et al. A randomized trial on dose response in radiation therapy of low grade glioma: EORTC study 22844. Int J Radiat Oncol Biol Phys. 1996;36(3):549–56.

    Article  PubMed  CAS  Google Scholar 

  40. Smedby KE, et al. Brain metastases admissions in Sweden between 1987 and 2006. Br J Cancer. 2009;101(11):1919–24.

    Article  PubMed  CAS  Google Scholar 

  41. Rades D, et al. Comparison of short-course versus long-course whole-brain radiotherapy in the treatment of brain metastases. Strahlenther Onkol. 2008;184(1):30–5.

    Article  PubMed  Google Scholar 

  42. Chang EL, et al. Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole brain radiotherapy: a randomised controlled trial. Lancet Oncol. 2009;10(11):1037–44.

    Article  PubMed  Google Scholar 

  43. Mehta MP, et al. Motexafin gadolinium combined with prompt whole brain radiotherapy prolongs time to neurologic progression in non-small-cell lung cancer patients with brain metastases: results of a phase III trial. Int J Radiat Oncol Biol Phys. 2009;73(4):1069–76.

    Article  PubMed  CAS  Google Scholar 

  44. Kocher M. Adjuvant whole-brain radiotherapy versus observation after radiosurgery or surgical resection of one to three cerebral metastases: results of the EORTC 22952–26001 study. J Clin Oncol. 2011;29(2):134–41.

    Article  PubMed  Google Scholar 

  45. Patchell RA, et al. A randomized trial of surgery in the treatment of single metastases to the brain. N Engl J Med. 1990;322(8):494–500.

    Article  PubMed  CAS  Google Scholar 

  46. Kirby N, et al. Physics strategies for sparing neural stem cells during whole brain radiation treatments. Med Phys. 2011;38(10):5338–44.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan C. Short MBBS, MRCP, FRCR, Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Short, S.C. (2013). Radiation Oncology in Brain Cancer. In: Watts, C. (eds) Emerging Concepts in Neuro-Oncology. Springer, London. https://doi.org/10.1007/978-0-85729-458-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-458-6_10

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-457-9

  • Online ISBN: 978-0-85729-458-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics