Advertisement

Conventional Workflow Technology for Scientific Simulation

  • Katharina Görlach
  • Mirko Sonntag
  • Dimka Karastoyanova
  • Frank Leymann
  • Michael Reiter
Chapter
Part of the Computer Communications and Networks book series (CCN)

Abstract

Workflow technology is established in the business domain for several years. This fact suggests the need for detailed investigations in the qualification of conventional workflow technology for the evolving application domain of e-Science. This chapter discusses the requirements on scientific workflows, the state of the art of scientific workflow management systems as well as the ability of conventional workflow technology to fulfill requirements of scientists and scientific applications. It becomes clear that the features of conventional workflows can be advantageous for scientists but also that thorough enhancements are needed. We therefore propose a conceptual architecture for scientific workflow management systems based on the business workflow technology as well as extensions of existing workflow concepts in order to improve the ability of established workflow technology to be applied in the scientific domain with focus on scientific simulations.

Keywords

Service Discovery Scientific Domain BPEL Process Service Catalog Finite Element Method Grid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    F. Leymann, D. Roller: Production Workflow: Concepts and Techniques. Prentice Hall, Englewood Cliffs, NJ, 1999.Google Scholar
  2. 2.
    I.J. Taylor, E. Deelman, E.B. Gannon, M. Shields (ed.): Workflows for e-Science – Scientific Workflows for Grids. Springer, 2007.Google Scholar
  3. 3.
    R. Chinnici, J.-J. Moreau, A. Ryman, S. Weerawarana: Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language. 2007.Google Scholar
  4. 4.
    A. Alves, A. Arkin, S. Askary, C. Barreto, B. Bloch, F. Curbera, M. Ford, Y. Goland, A. Guízar, N. Kartha, C. K. Liu, R. Khalaf, D. König, M. Marin, V. Mehta, S. Thatte, D. van der Rijn, P. Yendluri, A. Yiu: Web Services Business Process Execution Language Version 2.0. 2007.Google Scholar
  5. 5.
    D. Churches, G. Gombas, A. Harrison, J. Maassen, C. Robinson, M. Shields, I. Taylor, I. Wang: Programming Scientific and Distributed Workflow with Triana Services. Concurrency and Computation: Practice and Experience. Special Issue on Scientific Workflows, 2005.Google Scholar
  6. 6.
    S. Graham, A. Karmarkar, J. Mischkinsky, I. Robinson, I. Sedukhin: Web Services Resource (WS-Resource) V1.2. OASIS, 9 December 2004.Google Scholar
  7. 7.
    T. Oinn, M. Greenwood, M. Addis, M. Nedim Alpdemir, J. Ferris, K. Glover, C. Goble, A. Goderis, D. Hull, D. Marvin, P. Li, P. Lord, M.R. Pocock, M. Senger, R. Stevens, A. Wipat, C. Wroe: Taverna: Lessons in Creating a Workflow Environment for the Life Sciences. Concurrency and Computation: Practice and Experience 2006, 18(10):1067–110.CrossRefGoogle Scholar
  8. 8.
    I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludascher, S. Mock: Kepler: An Extensible System for Design and Execution of Scientific Workflows. SSDBM, 2004.Google Scholar
  9. 9.
    E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S. Patil, M.-H. Su, K. Vahi, M. Livny: Pegasus: Mapping Scientific Workflows onto the Grid. Lecture Notes in Computer Science, Volume 3165/2004, Second European AcrossGrids Conference, Springer, 2004, pp. 11–20.Google Scholar
  10. 10.
    R. Barga, J. Jackson, N. Araujo, D. Guo, N. Gautam, Y. Simmhan: The Trident Scientific Workflow Workbench. In: IEEE eScience Conference, 2008.Google Scholar
  11. 11.
    R. Barga, D. Gannon: Scientific versus Business Workflows. In: [2], 2007.Google Scholar
  12. 12.
    M. Sonntag, D. Karastoyanova, F. Leymann: The Missing Features of Workflow Systems for Scientific Computations. In: Proceedings of the 3 rd Grid Workflow Workshop (GWW) (to appear), 2010.Google Scholar
  13. 13.
    M. Sonntag, K. Görlach, D. Karastoyanova: Towards Simulation Workflows With BPEL: Deriving Missing Features From GriCoL. In: Proceedings of the 21st IASTED International Conference Modelling and Simulation (MS 2010), 2010Google Scholar
  14. 14.
    M. Sonntag, D. Karastoyanova: Next Generation Interactive Scientific Experimenting Based on the Workflow Technology. In: Proceedings of the 21st IASTED International Conference Modelling and Simulation (MS 2010), 2010.Google Scholar
  15. 15.
    L. Moreau, B. Clifford, J. Freire, Y. Gil, P. Groth, J. Futrelle, N. Kwasnikowska, S. Miles, P. Missier, J. Myers, The Open Provenance Model Core Specification (V1. 1). Future Generation Computer Systems, 2009.Google Scholar
  16. 16.
    D. Karastoyanova, F. Leymann: Making scientific applications on the Grid reliable through flexibility approaches borrowed from service compositions. In: N. Antonopoulos, G. Exarchakos, A. Liotta (Eds.), Handbook of research on P2P and Grid systems for service-oriented computing: Models, methodologies and applications (Information Science Publishing, 2010).Google Scholar
  17. 17.
    G. Decker, O. Kopp, F. Leymann, M. Weske: Interacting services: from specification to execution. In: Data & Knowledge Engineering. Vol. 68(10), Elsevier Science Publishers, 2009.Google Scholar
  18. 18.
    D. Pennington, D. Higgins, A.T. Peterson, M.B. Jones, B. Ludäscher, S. Bowers: Ecological niche modeling using the Kepler workflow system. In: [2], 2007.Google Scholar
  19. 19.
    N. Currle-Linde, P. Adamidis, M. Resch, F. Bös, J. Pleiss: GriCoL: A language for scientific grids. In: Proceedings of the 2nd IEEE International Conf. on e-Science and Grid Computing, 2006.Google Scholar
  20. 20.
    B. Wassermann, W. Emmerich, B. Butchart, N.Cameron, L. Chen, J. Patel: Sedna: A BPEL-Based Environment for Visual Scientific Workflow Modeling. In: [2], 2007.Google Scholar
  21. 21.
    S. Weerawarana, F. Curbera, F. Leymann, D.F. Ferguson, T. Storey: Web Services Platform Architecture: Soap, WSDL, WS-Policy, WS-Addressing, WS-Bpel, WS-Reliable Messaging and More. Prentice Hall, 2005Google Scholar
  22. 22.
    A. Akram, D. Meredith, R. Allan: Evaluation of BPEL to Scientific Workflows. In Cluster Computing and the Grid (CCGrid), pages 269–274. IEEE Computer Society, 2006.Google Scholar
  23. 23.
    R. Khalaf: Supporting business process fragmentation while maintaining operational semantics: a BPEL perspective. PhD thesis, University of Stuttgart. 2008.Google Scholar
  24. 24.
    M. Wieland, K. Görlach, D. Schumm, F. Leymann: Towards Reference Passing in Web Service and Workflow-based Applications. Proceedings of the 13th IEEE Enterprise Distributed Object Conference (EDOC 2009). 109–118 (2009).Google Scholar
  25. 25.
    M. Sonntag, K. Görlach, D. Karastoyanova, F. Leymann, M. Reiter: Process Space-based Scientific Workflow Enactment. In: International Journal of Business Process Integration and Management (IJBPIM) Special Issue on Scientific Workflows (to appear), Inderscience Publishers, 2010.Google Scholar
  26. 26.
    E. Deelman, A. Chervenak: Data Management Challenges of Data Intensive Scientific Workflows. Proc. IEEE Int’l Symp. Cluster Computing and the Grid (CCGRID ‘08), pp. 687–692, 2008.Google Scholar
  27. 27.
    D. Karastoyanova: Enhancing flexibility and reusability of web service flows through parameterization. PhD thesis, TU Darmstadt and University of Stuttgart, 2006.Google Scholar
  28. 28.
    D. Karastoyanova, F. Leymann: BPEL’n’Aspects: Adapting Service Orchestration Logic. In: Proceedings of the 7th International Conference on Web Services (ICWS 2009)Google Scholar
  29. 29.
    G. Kiczales: Aspect-Oriented Programming. In: Proceedings of ECOOP’97, Finland, 1997.Google Scholar
  30. 30.
    B. Weber, S. Rinderle, M. Reichert: Change Patterns and Change Support Features in Process-Aware Information Systems. In: Proceedings of Conference on Advanced Information Systems Engineering (CAiSE), 2007.Google Scholar
  31. 31.
    D. Martin, D. Wutke, F. Leymann: A Novel Approach to Decentralized Workflow Enactment. In: Proceedings of the 12th International IEEE Enterprise Distributed Object Computing Conference (EDOC 2008), 2008.Google Scholar
  32. 32.
    A. Barker, P. Besana, D. Robertson, J. Weissman: The Benefits Of Service Choreography For Data-Intensive Computing. In: Proceedings of the 7th International Workshop on Challenges of Large Applications in Distributed Environments (CLADE’09), in conjunction with HPDC’09: The 18th International Symposium on High Performance Distributed Computing, pages 1–10. ACM, 2009.Google Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Katharina Görlach
    • 1
  • Mirko Sonntag
    • 1
  • Dimka Karastoyanova
    • 1
  • Frank Leymann
    • 1
  • Michael Reiter
    • 1
  1. 1.Institute of Architecture of Application SystemsUniversity of StuttgartStuttgartGermany

Personalised recommendations