Advertisement

Structural Optimization Methods and Algorithms

  • Ernest Hinton
  • Johann Sienz
  • Mustafa Özakça

Abstract

Chapter 3 gives a brief overview of structural shape and topology optimization. Then several common optimization methods, such as SQP and genetic algorithms, are investigated in more detail. This is followed by a discussion of sensitivity analysis techniques with an in-depth look at the FDM and SAM.

Keywords

Design Variable Topology Optimization Design Space Structural Optimization Constraint Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Zienkiewicz OC, Campbell JS. Shape Optimization and sequential linear Programming. In: Gallagher RH, Zienkiewicz OC, editors. Optimum Structural Design. Chichester: John Wiley; 1973. Chapter 7.Google Scholar
  2. [2]
    Haftka RT, Grandhi RV. Structural Shape Optimization — a Survey. Comput Methods Appl Mech Eng 1986;57:91–106.MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    Ding Y. Shape Optimization of Structures: a Literature Survey. Comput Struct 1986;l:985–1004.CrossRefGoogle Scholar
  4. [4]
    Topping BHV. Shape Optimization of skeletal Structures: a Review. ASCE, J Struct Eng 1983;109:1933–51.CrossRefGoogle Scholar
  5. [5]
    Ramm E, Bletzinger KU, Kimmich S. Strategies in Shape Optimization of free Form Shells. In: Wriggers P, Wagner W, editors. Festschrift Erwin Stein: Nonlinear Computational Mechanics — a State of the Art. Heidelberg: Springer; 1991.Google Scholar
  6. [6]
    Schittkowski K, Zillober C. Nonlinear Programming. In UNESCO: Encyclopedia of Life Support Systems (EOLSS), Topic: Optimization and Operations Research; 2002. p. 157–77.Google Scholar
  7. [7]
    Bletzinger KU. Formoptimierung von Flächentragwerken [PhD thesis]. Stuttgart: Institut für Baustatik, Universität Stuttgart; 1990. Report No.: 11.Google Scholar
  8. [8]
    Hinton E, Sienz J, Hassani, B. Fully integrated Design Optimization for Engineering Structures. In: Topping BHV, editor. Proceedings of 3rd International Conference on Computational Structures and Technology; 1996 Aug 21–23; Budapest, Hungary. Edinburgh: Saxe-Coburg Publications; 1996.Google Scholar
  9. [9]
    Papalambros PY, Chiredast, M. Integrated structural Optimization System. In: Bendsøe MP, Soares CAM, editors. Proceedings of NATO/ARW Topology Design of Structures; 1993; Sesimbra, Portugal. Kluwer Academic Publishers; 1993. p. 501–14.CrossRefGoogle Scholar
  10. [10]
    Lee SJ, Lee JEB, Hinton E. Shell Topology Optimization using the layered artificial Material Model. Int J Numer Methods Eng 2000;47(4):843–67.CrossRefGoogle Scholar
  11. [11]
    Sienz J, Hinton E, Bugeda G, Bulman, SD. Some Studies on integrating Topology and Shape Optimization. In: Papadrakakis M, Topping BHV, editors. Innovative Computational Methods for Structural Mechanics. Edinburgh: Saxe-Coburg Press; 1998. Chapter 11, p. 223–56.Google Scholar
  12. [12]
    Hinton E, Sienz J, Bulman SD, Lee SJ, Ghasemi MR. Integrated structural Topology, Shape and Sizing Optimization Methods. In: CD-ROM Proceedings of 4th World Congress on Computational Mechanics; 1998 Jun 29-Jul 2; Buenos Aires, Argentina. Barcelona: CIMNE; 1998.Google Scholar
  13. [13]
    Rozvany GIN, Bendsøe MP, Kirsch U. Layout Optimization of Structures. Appl Mech Rev 1995;48:41–119.CrossRefGoogle Scholar
  14. [14]
    Hassani B, Hinton E. A Review of Homogenization and Topology Optimization; Part I: Homogenization Theory for Media with periodic Structure; Part II: Analytical and numerical Solution of Homogenization Equations; Part III: Topology Optimization using Optimality Criteria. Comput Struct 1998;69(6):707–56.MATHCrossRefGoogle Scholar
  15. [15]
    Xie YM, Steven GP. Evolutionary structural Optimization. Berlin: Springer Verlag; 1997.MATHCrossRefGoogle Scholar
  16. [16]
    Querin OM. Evolutionary structural Optimization: Stress-based Formulation and Implementation [PhD thesis]. Sydney: Department of Aeronautical Engineering, University of Sydney; 1997.Google Scholar
  17. [17]
    Rozvany GIN. Problem Classes, Solution Strategies and unified Terminology of FE-based Topology Optimization. In: Rozvany GIN, Olhoff N, editors. Topology Optimization of Structures and Composite Continua, NATO Science Series, II. Mathematics, Physics and Chemistry, Vol 7. Kluwer Academic Publishers; 2000. ISBN 0-7923-6807-X. p. 19–36.Google Scholar
  18. [18]
    Rozvany GIN. Aims, Scope, Methods, History and unified Terminology of Computer-aided Topology Optimization in structural Mechanics. Struct Optim 2001;21(2):90–108.CrossRefGoogle Scholar
  19. [19]
    Rozvany GIN. Stress Ratio and Compliance based Methods in Topology Optimization — a critical Review. Struct Optim 2001;21(2):109–19.CrossRefGoogle Scholar
  20. [20]
    Bendsøe MP, Kikuchi N. Generating optimal Topologies in structural Design using a Homogenization Method. Comput Methods Appl Mech Eng 1998;71:197–224.CrossRefGoogle Scholar
  21. [21]
    Bendsøe MP. Optimal Shape Design as a Material Distribution Problem. Struct Optim 1989;l:193–202.CrossRefGoogle Scholar
  22. [22]
    Sigmund O. A 99 Line Topology Optimization Code written in Matlab. Struct Optim 2001;21(2):120–7.MathSciNetCrossRefGoogle Scholar
  23. [23]
    Bulman SD, Hinton E. Constrained adaptive Topology Optimization. Des Optim 1999;l(4):419–39.Google Scholar
  24. [24]
    Paley M, Fuchs MB, Miroshnik E. The Aboudi micromechanical Model for Shape Design of Structures. In: Topping BHV, editor. Proceedings of the 3rd International Conference Computers Structures Technology; 1996; Budapest, Hungary. Edinburgh: Civil-Comp Press; 1996.Google Scholar
  25. [25]
    Walther F, Mattheck C. Local stiffening and sustaining of Shell Structures by SKO and CAO. In: Brebbia CA, Hernandez S, editors. Proceeding of International Conference on Structural Optimization; 1993; Zaragoza, Spain. Southampton: Computational Mechanics; 1993. p. 181–8.Google Scholar
  26. [26]
    Mattheck C, Burkhardt S. A New Method of Structural Shape Optimization based on Biological Growth [technical report]. Karlsruhe: Kernforschungszentrum Karlsruhe GmbH; 1989.Google Scholar
  27. [27]
    Mattheck C. Engineering Components grow like Trees. Materialwiss Werkst 1990;21:143–68.CrossRefGoogle Scholar
  28. [28]
    Mattheck C. Trees — the Mechanical Design. Heidelberg: Springer Verlag; 1991.Google Scholar
  29. [29]
    Mattheck C, Kubler H. Wood — the Internal Optimization of Trees. Heidelberg: Springer Verlag; 1995.Google Scholar
  30. [30]
    Jancu G, Schnack E. Control of the von Mises Stress with dynamic Programming. In: Proceedings of GAMM Meeting, Siegen, Germany; 1988.Google Scholar
  31. [31]
    Umetani Y, Hirai S. Shape Optimization of Beams subject to Displacement Restrictions on the Basis of the growing-reforming Procedure. Bull Jpn Soc Mech Eng 1978;21:1113–9.CrossRefGoogle Scholar
  32. [32]
    Huiskes R, Weinans H, Grootenboer HJ, Dalstra M, Fudala B, Slooff TJ. Adaptive Bone-remodelling Theory applied to Prosthetic-design Analysis. J Biomech 1987;22:1135–50.CrossRefGoogle Scholar
  33. [33]
    Chen JL, Tsai WC. A Study of simulated biological Growth Approaches for Shape Optimization. In: Comput Methods Appl Mech Eng. Singapore: World Scientific; 1992. p. 1174–9.Google Scholar
  34. [34]
    Chen JL, Tsai WC. Shape Optimization by using simulated biological Growth Approaches. AIAA J 1993;31(11):2143–7.MathSciNetCrossRefGoogle Scholar
  35. [35]
    Azegami H. A Proposal of a Shape Optimization Method using a constitutive Equation of Growth. Int J Jpn Soc Mech Eng 1990;33(l):64–71.Google Scholar
  36. [36]
    Rajan SD, Belegundu AD. Shape optimal Design using fictitious Loads. AIAA J 1989;27(l):102–7.CrossRefGoogle Scholar
  37. [37]
    Querin OM, Steven GP, Xie YM. Improved computational Efficiency using bidirectional evolutionary structural Optimization (BESO). In: CD-ROM Proceedings of 4th World Congress on Computational Mechanics; 1998 Jun 29-Jul 2; Buenos Aires, Argentina. Barcelona: CIMNE; 1998.Google Scholar
  38. [38]
    Maute K, Ramm E. Adaptive Techniques in Topology Optimization. In: Proceedings of 5th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization; 1; AIAA; USA; 1994. p. 121–31.Google Scholar
  39. [39]
    Maute K, Ramm E. Adaptive Topology Optimization. Struct Optim 1995;10: 100–12.CrossRefGoogle Scholar
  40. [40]
    Eschenauer HA, Kobolev V, Schumacher A. Bubble Method of Topology and Shape Optimization of Structures. Struct Optim 1994;8:42–51.CrossRefGoogle Scholar
  41. [41]
    Kim H, Querin OM, Steven GP, Xie YM. Development of an intelligent Cavity Creation (ICC) Algorithm for evolutionary structural Optimization. In: Proceedings of the Australasian Conference on Structural Optimization; 1998; Sydney, Australia. p. 241–50.Google Scholar
  42. [42]
    Vanderplaats GN. DOT User Manual. VMA Engineering, USA; 2000.Google Scholar
  43. [43]
    Kreisseimeier G, Steinhauser R. Application of Vector Performance Optimization to a robust Control Loop Design for a Fighter Aircraft. Int J Control 1983;37:251–84.CrossRefGoogle Scholar
  44. [44]
    Kreisseimeier G, Steinhauser R. Systematic Control Design by optimizing a Vector Performance Index. In: Proceedings of International Federation of Active Controls Symposium on Computer-Aided Design of Control Systems; 1979; Zurich, Switzerland. p. 113–7.Google Scholar
  45. [45]
    Eschenauer HA, Post U, Bermicker M. Einsatz der Optimierungsprozedur SAPOP zur Auslegung von Bauteilkomponenten. Bauingenieur 1988;63:515–26.Google Scholar
  46. [46]
    Kimmich S, Ramm E. Structural Optimization and Analysis with Program System CARAT. In Eschenauer HA, Thierauf G, editors. Discretization Methods and Structural Optimization-Procedures and Applications. Berlin: Springer-Verlag; 1989.Google Scholar
  47. [47]
    Stegmüller H, Bletzinger KU, Kimmich S. Programmsystem CARAT, Eingabebeschreibung und Dokumentation [internal report]. Stuttgart: Institut für Baustatik, Universität Stuttgart; 1988.Google Scholar
  48. [48]
    Schmit LA. Symposium Summary and concluding Remarks. In: Bennett JA, Botkin ME, editors. The Optimum Shape. New York: Plenum Press; 1986.Google Scholar
  49. [49]
    Özakça M. Analysis and Optimal Design of Structures with Adaptivity [PhD thesis]. Swansea: Department of Civil Engineering, University of Wales Swansea; 1993. Report No.: C/Ph/168/93.Google Scholar
  50. [50]
    Sienz J. Integrated Structural Modelling, adaptive Analysis and Shape Optimization [PhD thesis]. Swansea: Department of Civil Engineering, University of Wales Swansea; 1994. Report No.: C/Ph/181/94.Google Scholar
  51. [51]
    Powell MJD. VMCWD: A Fortran Subroutine for constrained Optimization [internal report]. Cambridge: Department of Applied Mathematics and Theoretical Physics, University of Cambridge; 1982. Report No.: DAMTP 1982/NA4.Google Scholar
  52. [52]
    Chamberlain RM, Lemarechal C, Pedersen HC, Powell MJD. The Watchdog Technique for forcing Convergence in Algorithms for constrained Optimization. Math Program Study 1982;16:1–17.MathSciNetMATHCrossRefGoogle Scholar
  53. [53]
    Hernandez S. Mathematical Programming Theory of Optimum Engineering Design. In: Adeli H, editor. Advances in Design Optimization. Chapman and Hall; 1994. Now published by Thompson Publishing Services.Google Scholar
  54. [54]
    Schittkowski K. Nonlinear Programming Software [software manual]. Bayreuth: Department of Mathematics, Universität Bayreuth; 1991.Google Scholar
  55. [55]
    Svanberg K. The Method of moving Asymptotes. Int J Numer Methods Eng 1987;23:359–73.MathSciNetCrossRefGoogle Scholar
  56. [56]
    Lasdon LS, Warren AD, Jain A, Ratner M. Design and testing of a generalized reduced Gradient Code for nonlinear Programming. ACM Trans Math Software 1978;4(1):34–50.MATHCrossRefGoogle Scholar
  57. [57]
    Goldberg DE. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley; 1989.Google Scholar
  58. [58]
    Fogel DB. Applying evolutionary Programming to selected traveling Salesman Problems. Cybernet Syst 1993;24(1):27–36.MathSciNetCrossRefGoogle Scholar
  59. [59]
    Back T, Hoffmeister F, Schwefel HP. A Survey of Evolution Strategies. In: Belew RK, Booker LB, editors. ICGA IV. Proceedings of the 4th International Conference on Genetic Algorithms; 1991. San Diego: Morgan Kaufman Publishers Inc. p. 2–9.Google Scholar
  60. [60]
    Kirkpatrick S, Gelatt Jr CD, Vecchi MP. Optimization by simulated Annealing. Science 1983;220(4598):671–80.MathSciNetMATHCrossRefGoogle Scholar
  61. [61]
    Kennedy J, Eberhart RC. Particle Swarm Optimization. In: Proceedings of IEEE International Conference on Neural Networks, IV; 1995; Piscataway, NJ. p. 1942–8.Google Scholar
  62. [62]
    Edgar TF, Himmelblau, DM. Optimization of Chemical Processes. New York: McGraw-Hill Book Company; 1988.Google Scholar
  63. [63]
    Schittkowski K, Zillober C, Zotemantel R. Numerical Comparison of nonlinear Programming Algorithms for structural Optimization. Struct Optim 1994;7:1–19.CrossRefGoogle Scholar
  64. [64]
    Vanderplaats GN, Moses F. Structural Optimization by Methods of feasible Directions. Comput Struct 1973;3:739–55.CrossRefGoogle Scholar
  65. [65]
    Fleury C. Dual Methods for convex separable Problems. In: Rozvany GIN, editor. Proceedings of NATO/DFG ASI Optimization of Large Structural Systems, 1. Berchtesgaden, Germany. Dordrecht: Kluwer Academic Publishers; 1993. p. 509–30.Google Scholar
  66. [66]
    Stoer J. Foundations of recursive quadratic Programming Methods for solving nonlinear Programs. In: Schittkowski K, editor. Computational Mathematical Programming, NATO ASI Series, Series F: Computer and Systems Sciences, 15. Springer; 1985.Google Scholar
  67. [67]
    Spellucci P. Numerische Verfahren der nichtlinearen Optimierung. Birkhäuser; 1993.Google Scholar
  68. [68]
    Papalambros PY, Wilde, DJ. Principles of Optimal Design: Modelling, Computation. Cambridge: Cambridge University Press; 2001. ISBN 0-521-62727-3.Google Scholar
  69. [69]
    Lee SJ. Analysis and Optimization of Shells [PhD thesis]. Swansea: Department of Civil Engineering, University of Wales Swansea; 1998. Report No.: C/Ph/223/98.Google Scholar
  70. [70]
    Fox RL. Optimization Methods for Engineering Design. Reading: Addison-Wesley; 1971.Google Scholar
  71. [71]
    Hadley G. Nonlinear and Dynamic Programming. Reading: Addison-Wesley; 1964.MATHGoogle Scholar
  72. [72]
    Hildebrand FB. Advanced Calculus for Applications. Prentice-Hall; 1976.Google Scholar
  73. [73]
    Fletcher R, Reeves CM. Function Minimization by conjugate Gradients. Br Comput J 1964; 7: 149–54.MathSciNetMATHCrossRefGoogle Scholar
  74. [74]
    Vanderplaats GN. Numerical Optimization Techniques for Engineering Design. McGraw-Hill; 1984.Google Scholar
  75. [75]
    Arora JS. Introduction to Optimum Design. New York: McGraw-Hill; 1989.Google Scholar
  76. [76]
    Zoutendijk G. Methods of Feasible Directions. Amsterdam: Elsevier; 1960.MATHGoogle Scholar
  77. [77]
    Powell MJD. A fast Algorithm for nonlinearly constrained Optimization Calculations [internal report]. Cambridge: Department of Applied Mathematics and Theoretical Physics, University of Cambridge; 1977. Report No.: DAMPTP 77/NA2.Google Scholar
  78. [78]
    Hajela P. Genetic Search-an Approach to the non-convex Optimization Problem. AIAA J 1990;28(7):1205–10.CrossRefGoogle Scholar
  79. [79]
    Rajeev S, Krishnamoorthy CS. Discrete Optimization of Structures using GA. ASCE, J Struct Eng 1992; 118(5):1233–50.CrossRefGoogle Scholar
  80. [80]
    Sugimoto H. Discrete Optimization of Truss Structures and GAs. In: Choi CK, Sugimoto H, Yun CB, editors. Proceedings of Korea-Japan Joint Seminar on Structural Optimization. Seoul, Korea; 1992. p. 1–10.Google Scholar
  81. [81]
    Arora JS, Govil AK. An efficient Method for optimal structural Design by Substructuring. Comput Struct 1977;7:507–15.CrossRefGoogle Scholar
  82. [82]
    Haug EJ, Arora JS. Applied Optimal Design. New York: John Wiley & Sons; 1979.Google Scholar
  83. [83]
    Park GJ, Lee WI. A structural Optimization post-processing Taguchi Method. In: Choi CK, Sugimoto H, Yun, CB, editors. Proceedings of Korea-Japan Joint Seminar on Structural Optimization. Seoul, Korea; 1992. p. 109–17.Google Scholar
  84. [84]
    Belblidia F. Fully Integrated Design Optimization for Plate Structures — FIDO Plates [PhD thesis]. Swansea: Department of Civil Engineering, University of Wales Swansea; 1999. Report No.: C/Ph/231/99.Google Scholar
  85. [85]
    Holland J. Adaptation in Natural and Artificial Systems. University of Michigan Press; 1975.Google Scholar
  86. [86]
    Goldberg DE. Genetic Algorithms in Search, Optimization and Machine Learning. Englewood Cliffs: Addison-Wesley; 1989.MATHGoogle Scholar
  87. [87]
    Ghasemi MR. Structural Optimization of Trusses and axisymmetric Shells using gradient based Methods and Genetic Algorithms [PhD thesis]. Swansea: Department of Civil Engineering, University of Wales Swansea; 1996. Report No.: C/Ph/207/96.Google Scholar
  88. [88]
    Ghasemi MR, Hinton E. Truss Optimization using Genetic Algorithms. In: Topping BHV, editor. Proceedings of Advances in Computational Structures Technology. 1996. Edinburgh: Civil Comp Press; 1996. p. 59–75.CrossRefGoogle Scholar
  89. [89]
    DeJong K. An Analysis of the Behaviour of a Class of genetic adaptive Systems [PhD thesis]. Department of Computer and Communications Sciences, University of Michigan; 1975.Google Scholar
  90. [90]
    Grefenstette JJ, Fitzpatrick, JM. Genetic Search with approximate Function Evaluations. In: Proceedings of First International Conference on Genetic Algorithms and their Applications. L Erlbaum Inc; 1985. p. 112–20.Google Scholar
  91. [91]
    Al-Khamis MTA. Structural Optimization for static and free Vibration Conditions using genetic and gradient-based Algorithms [PhD thesis]. Swansea: Department of Civil Engineering, University of Wales Swansea; 1996. Report No.: C/Ph/ 202/96.Google Scholar
  92. [92]
    Whitley D. A Genetic Algorithm Tutorial [technical report]. Department of Computer Science, Colorado State University; 1993. Report No.: CS-93-103.Google Scholar
  93. [93]
    Toropov VV. Simulation Approach to structural Optimization. Struct Optim 1989;l:37–46.CrossRefGoogle Scholar
  94. [94]
    Toropov VV, Filatov AA, Polynkin AA. Multiparameter structural Optimization using FEM and Multipoint explicit Approximations. Struct Optim 1993;6:7–14.CrossRefGoogle Scholar
  95. [95]
    Koza JR. Genetic Programming: On the Programming of Computers by Means of natural Selection. Cambridge: MIT Press; 1992.MATHGoogle Scholar
  96. [96]
    Ballard DH. An Introduction to Natural Computation. Cambridge: MIT Press; 1997.Google Scholar
  97. [97]
    Toropov VV. Modelling and Approximation Strategies in Optimization — global and mid-range Approximations, Response Surface Methods, Genetic Programming, low/high Fidelity Models. In: Blachut J, Eschenauer HA, editors. Emerging Methods for Multidisciplinary Optimization, CISM Courses and Lectures, No. 425, International Centre for Mechanical Sciences. New York: Springer; 2001.Google Scholar
  98. [98]
    Bates SJ, Sienz J, Langley DS. Formulation of the Audze-Eglais Design of Experiments using a Genetic Algorithm. Adv Eng Software. In press 2003.Google Scholar
  99. [99]
    Haug EJ, Choi KK, Komkow U. Design Sensitivity Analysis of structural Systems. Mathematics in Science and Engineering 1986; 177.Google Scholar
  100. [100]
    Venkayya VB. Structural Optimization: a Review and some Recommendations. Int J Numer Methods Eng 1978.Google Scholar
  101. [101]
    Austin MA, Voon BK. Structural Optimization in a distributed Computing Environment. Comput Methods Appl Mech Eng 1993;107:173–92.CrossRefGoogle Scholar
  102. [102]
    Haftka RT, Gürdal Z, Kamat MP. Elements of Structural Optimization. Dordrecht: Kluwer Academic Publishers; 1990.MATHGoogle Scholar
  103. [103]
    Tortorelli DA, Michaleris P. Design Sensitivity Analysis: Overview and Review. Inverse Probl Eng 1994;l:71–105.CrossRefGoogle Scholar
  104. [104]
    Kimmich S. Strukturoptimierung und Sensibilitätsanalyse mit finiten Elementen [PhD thesis]. Stuttgart: Institut für Baustatik, Universität Stuttgart; 1990. Report No.: 12.Google Scholar
  105. [105]
    Haslinger J, Neittaanmäki P. Finite Element Approximation for Optimal Shape Design: Theory and Applications. New York: Wiley & Sons; 1988.MATHGoogle Scholar
  106. [106]
    Griewank A, Corliss G. Automatic Differentiation of Algorithms. Philadelphia: SIAM; 1991.MATHGoogle Scholar
  107. [107]
    Berz T, Bischof C, Corliss G, Griewank A. Computational Differentiation: Techniques, Applications, and Tools. Philadelphia: SIAM; 1996.MATHGoogle Scholar
  108. [108]
    Bischof C. A Collection of automatic Differentiation Tools. http://www.unix.mcs.anl.gov/autodiff/AD_Tools/index.html; 1999.
  109. [109]
    Gill PE, Murray W, Saunders MA, Wright MH. Computing forward Differences for numerical Optimization. SIAM J Sci Stat Comput 1983;4:310–21.MathSciNetMATHCrossRefGoogle Scholar
  110. [110]
    Schittkowski K. NLPQLP: a new Fortran Implementation of a sequential quadratic Programming Algorithm for parallel Computing [internal report]. Bayreuth: Department of Mathematics, Universität Bayreuth; 2002.Google Scholar
  111. [111]
    Vanderplaats GN. Thirty Years of modern Structural Optimization. Adv Eng Software 1993;16:81–8.CrossRefGoogle Scholar
  112. [112]
    Olhoff N, Rasmussen J, Lund E. Method of Exact Numerical Differentiation for Error Elimination in Finite Element Based Semi-Analytical Shape Sensitivity Analyses [special report]. Ålborg: Institute of Mechanical Engineering, Ålborg Unversity; 1992. Report No.: 10.Google Scholar
  113. [113]
    Wang BP, Babu D, Lawrence KL. Shape Design Sensitivity Analysis using closed-form Stiffness Matrix for hierarchical triangular Elements. Comput Struct 1992;43(l):69–75.MATHCrossRefGoogle Scholar
  114. [114]
    Vital CA, Lee HS, Haber RB. The consistent Tangent Operator for Design Sensitivity Analysis of History-dependent Response. 1991.Google Scholar
  115. [115]
    Sienz J, Hinton E. Reliable structural Optimization with Error Estimation, Adaptivity and robust Sensitivity Analysis. Comput Struct 1997;64(1-4):31–63.MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2003

Authors and Affiliations

  • Ernest Hinton
    • 1
  • Johann Sienz
    • 2
  • Mustafa Özakça
    • 3
  1. 1.Department of Civil EngineeringUniversity of Wales SwanseaSwanseaUK
  2. 2.Department of Mechanical EngineeringUniversity of Wales SwanseaSwanseaUK
  3. 3.Department of Civil Engineering, Faculty of EngineeringUniversity of GaziantepGaziantepTurkey

Personalised recommendations