Skip to main content

An Improved Hybrid Genetic Algorithm: New Results for the Quadratic Assignment Problem

  • Conference paper
Book cover Research and Development in Intelligent Systems XX (SGAI 2003)

Abstract

Genetic algorithms (GAs) have been proven to be among the most powerful intelligent techniques in various areas of the computer science, including difficult optimization problems. In this paper, we propose an improved hybrid genetic algorithm (IHGA). It uses a robust local improvement procedure (a limited iterated tabu search (LITS)) as well as an effective restart (diversification) mechanism that is based on so-called “shift mutations”. IHGA has been applied to the well-known combinatorial optimization problem, the quadratic assignment problem (QAP). The results obtained from the numerous experiments on different QAP instances from the instances library QAPLIB show that the proposed algorithm appears to be superior to other modem heuristic approaches that are among the best algorithms for the QAP. The high efficiency of our algorithm is also corroborated by the fact that the new, recordbreaking solutions were obtained for a number of large real-life instances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chelouah R, Siarry P. A continuous genetic algorithm designed for the global optimization of multimodal functions. J Heurist 2000; 6:191–213

    Google Scholar 

  2. Sui TN, Moon SR. Genetic algorithm and graph partitioning. IEEE Trans Comput 1996; 45:841–855

    Article  MathSciNet  Google Scholar 

  3. Drezner Z, Salhi S. Using metaheuristics for the one-way and two-way network design problem. Nav Res Logist 2002; 49:449–463

    Article  MathSciNet  MATH  Google Scholar 

  4. Miller DM, Chen HC, Matson J, Liu Q. A hybrid genetic algorithm for the single machine scheduling problem. J Heurist 1999; 5:437–454

    Google Scholar 

  5. Yagiura M, Ibaraki T. Genetic and local search algorithms as robust and simple optimization tools. In: Osman IH (ed) Meta-heuristics: theory & applications, Kluwer, Dordrecht, 1996, pp 63–82

    Google Scholar 

  6. Beasley JE, Chu PC. A genetic algorithm for the set covering problem. Eur J Oper Res 1996; 94:392–404

    Article  MATH  Google Scholar 

  7. Merz P, Freisleben B. Genetic local search for the TSP: new results. Proceedings of the 1997 IEEE international conference on evolutionary computation, 1997, pp 159–164

    Google Scholar 

  8. Holland JH. Adaptation in natural and artificial systems, University of Michigan Press, Ann Arbor, MI, 1975

    Google Scholar 

  9. Davis L. Handbook of genetic algorithms, Van Nostrand, New York, 1991

    Google Scholar 

  10. Goldberg DE. Genetic algorithms in search, optimization and machine learning, Addison-Wesley, Reading, MA, 1989

    MATH  Google Scholar 

  11. Mühlenbein H. Genetic algorithms. In: Aarts E, Lenstra JK (eds) Local search in combinatorial optimization, Wiley, Chichester, 1997, pp 137–171

    Google Scholar 

  12. Moscato P. Memetic algorithms: a short introduction. In: Come D, Dorigo M, Glover F (eds) New ideas in optimization, McGraw-Hill, London, 1999, pp 219–234

    Google Scholar 

  13. Lourenco HR, Martin O, Stützle T. Iterated local search. In: Glover F, Kochenberger G (eds) Handbook of metaheuristics, Kluwer, Norwell, 2002, pp 321–353

    Google Scholar 

  14. Mladenović N, Hansen P. Variable neighbourhood search. Comput Oper Res 1997; 24:1097–1100

    Article  MathSciNet  MATH  Google Scholar 

  15. Schrimpf G, Schneider K, Stamm-Wilbrandt H, Dueck V. Record breaking optimization results using the ruin and recreate principle. J Comput Phys 2000; 159:139–171

    Article  MathSciNet  MATH  Google Scholar 

  16. Eshelman L. The CHC adaptive search algorithm: how to have safe search when engaging in nontrad itional genetic recombination. In: Rowlings GJE (ed) Foundat ions of genetic algorithms, Morgan Kaufmann, 1991, pp 265–283

    Google Scholar 

  17. Glover F, Laguna M. Tabu search, Kluwer, Dordrecht, 1997

    Book  MATH  Google Scholar 

  18. Dickey JW, Hopkins JW. Campus building arrangement using TOPAZ. Transp Res 1972; 6:59–68

    Article  Google Scholar 

  19. Hu TC, Kuh ES (ed). VLSI circuit layout: theory and design, IEEE Press, New York, 1985

    Google Scholar 

  20. Taillard E. Comparison of iterative searches for the quadratic assignment problem. Location Sci 1995; 3: 87–105

    Article  MATH  Google Scholar 

  21. Krarup J, Pruzan PM. Computer-aided layout design. Math Program Study 1978; 9:75–94

    Article  MathSciNet  Google Scholar 

  22. Burkard RE, Offermann J. Entwurf von schreibmaschinentastaturen mittels quadratischer zuordnungsprobleme. Z Oper Res 1977; 21:121–132

    Google Scholar 

  23. Burkard RE, Cela E, Pardalos PM, Pitsoulis L. The quadratic assignment problem. In: Du DZ, Pardalos PM (eds) Handbook of combinatorial optimization, Vol.3, Kluwer, Dordrecht, 1998, pp241–337

    Google Scholar 

  24. Sahni S, Gonzalez T. P-complete approximation problems. JACM 1976; 23:555-565

    Google Scholar 

  25. Taillard E. FANT: fast ant system. Tech. report IDSIA-46-98, Lugano, Switzerland, 1998

    Google Scholar 

  26. Bolte A, Thonemann UW. Optimizing simulated annealing schedules with genetic programming. Eur J Oper Res 1996; 92:402–416

    Article  Google Scholar 

  27. Taillard E. Robust taboo search for the QAP. Parallel Comput 1991; 17:443–455

    Article  MathSciNet  Google Scholar 

  28. Ahuja RK, Orlin JB, Tiwari A. A greedy genetic algorithm for the quadratic assignment problem. Comput Oper Res 2000; 27:917–934

    Article  MathSciNet  MATH  Google Scholar 

  29. Drezner Z. A new genetic algorithm for the quadratic assignment problem. INFORMS J Comput 2003 (in press)

    Google Scholar 

  30. Fleurent C, Ferland JA. Genetic hybrids for the quadratic assignment problem. In: Pardalos PM, Wolkowicz H (eds) Quadratic assignment and related problems. DIMACS series in discrete mathematics and theoretical computer science, vo1.16, AMS, Providence, 1994, pp 173–188

    Google Scholar 

  31. Lim MH, Yuan Y, Omatu S. Efficient genetic algorithms using simple genes exchange local search policy for the quadratic assignment problem. Comput Optim Appl 2000; 15:249–268

    Article  MathSciNet  MATH  Google Scholar 

  32. Merz P, Freisleben B. Fitness landscape analysis and memetic algorithms for the quadratic assignment problem. IEEE Trans Evolut Comput 2000; 4:337–352

    Article  Google Scholar 

  33. Misevicius A. Genetic algorithm hybridized with ruin and recreate procedure: application to the quadratic assignment problem. In: Bramer M, Preece A, Coenen F (eds) Research and development in intelligent systems XIX. Proceedings of 22nd SGAI international conference on knowledge based systems and applied artificial intel1igence (Cambridge, UK), Springer, London, 2002, pp 163–176

    Google Scholar 

  34. Tate DM, Smith AE. A genetic approach to the quadratic assignment problem. Comput Oper Res 1995; 1:73–83

    Article  Google Scholar 

  35. Misevicius A. A tabu search algorithm for the quadratic assignment problem. Working paper, Kaunas University of Technology, Lithuania, 2002 (under review)

    Google Scholar 

  36. Burkard RE, Karisch S, Rendl F. QAPLIB-a quadratic assignment problem library. J Glob Optim 1997; 10:391–403

    Google Scholar 

  37. Stützle T. MAX-MIN ant system for quadratic assignment problems. Res. report AIDA97-04, Darmstadt University of Technology, Germany, 1997

    Google Scholar 

  38. Taillard E, Gambardella LM. Adaptive memories for the quadratic assignment problem. Tech. report IDSIA-87-97, Lugano, Switzerland, 1997

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag London

About this paper

Cite this paper

Misevicius, A. (2004). An Improved Hybrid Genetic Algorithm: New Results for the Quadratic Assignment Problem. In: Coenen, F., Preece, A., Macintosh, A. (eds) Research and Development in Intelligent Systems XX. SGAI 2003. Springer, London. https://doi.org/10.1007/978-0-85729-412-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-412-8_1

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-780-3

  • Online ISBN: 978-0-85729-412-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics