An Improved Hybrid Genetic Algorithm: New Results for the Quadratic Assignment Problem

  • Alfonsas Misevicius
Conference paper


Genetic algorithms (GAs) have been proven to be among the most powerful intelligent techniques in various areas of the computer science, including difficult optimization problems. In this paper, we propose an improved hybrid genetic algorithm (IHGA). It uses a robust local improvement procedure (a limited iterated tabu search (LITS)) as well as an effective restart (diversification) mechanism that is based on so-called “shift mutations”. IHGA has been applied to the well-known combinatorial optimization problem, the quadratic assignment problem (QAP). The results obtained from the numerous experiments on different QAP instances from the instances library QAPLIB show that the proposed algorithm appears to be superior to other modem heuristic approaches that are among the best algorithms for the QAP. The high efficiency of our algorithm is also corroborated by the fact that the new, recordbreaking solutions were obtained for a number of large real-life instances.


Genetic Algorithm Tabu Search Memetic Algorithm Variable Neighbourhood Search Network Design Problem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chelouah R, Siarry P. A continuous genetic algorithm designed for the global optimization of multimodal functions. J Heurist 2000; 6:191–213Google Scholar
  2. 2.
    Sui TN, Moon SR. Genetic algorithm and graph partitioning. IEEE Trans Comput 1996; 45:841–855MathSciNetCrossRefGoogle Scholar
  3. 3.
    Drezner Z, Salhi S. Using metaheuristics for the one-way and two-way network design problem. Nav Res Logist 2002; 49:449–463MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Miller DM, Chen HC, Matson J, Liu Q. A hybrid genetic algorithm for the single machine scheduling problem. J Heurist 1999; 5:437–454Google Scholar
  5. 5.
    Yagiura M, Ibaraki T. Genetic and local search algorithms as robust and simple optimization tools. In: Osman IH (ed) Meta-heuristics: theory & applications, Kluwer, Dordrecht, 1996, pp 63–82Google Scholar
  6. 6.
    Beasley JE, Chu PC. A genetic algorithm for the set covering problem. Eur J Oper Res 1996; 94:392–404MATHCrossRefGoogle Scholar
  7. 7.
    Merz P, Freisleben B. Genetic local search for the TSP: new results. Proceedings of the 1997 IEEE international conference on evolutionary computation, 1997, pp 159–164Google Scholar
  8. 8.
    Holland JH. Adaptation in natural and artificial systems, University of Michigan Press, Ann Arbor, MI, 1975Google Scholar
  9. 9.
    Davis L. Handbook of genetic algorithms, Van Nostrand, New York, 1991Google Scholar
  10. 10.
    Goldberg DE. Genetic algorithms in search, optimization and machine learning, Addison-Wesley, Reading, MA, 1989MATHGoogle Scholar
  11. 11.
    Mühlenbein H. Genetic algorithms. In: Aarts E, Lenstra JK (eds) Local search in combinatorial optimization, Wiley, Chichester, 1997, pp 137–171Google Scholar
  12. 12.
    Moscato P. Memetic algorithms: a short introduction. In: Come D, Dorigo M, Glover F (eds) New ideas in optimization, McGraw-Hill, London, 1999, pp 219–234Google Scholar
  13. 13.
    Lourenco HR, Martin O, Stützle T. Iterated local search. In: Glover F, Kochenberger G (eds) Handbook of metaheuristics, Kluwer, Norwell, 2002, pp 321–353Google Scholar
  14. 14.
    Mladenović N, Hansen P. Variable neighbourhood search. Comput Oper Res 1997; 24:1097–1100MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Schrimpf G, Schneider K, Stamm-Wilbrandt H, Dueck V. Record breaking optimization results using the ruin and recreate principle. J Comput Phys 2000; 159:139–171MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Eshelman L. The CHC adaptive search algorithm: how to have safe search when engaging in nontrad itional genetic recombination. In: Rowlings GJE (ed) Foundat ions of genetic algorithms, Morgan Kaufmann, 1991, pp 265–283Google Scholar
  17. 17.
    Glover F, Laguna M. Tabu search, Kluwer, Dordrecht, 1997MATHCrossRefGoogle Scholar
  18. 18.
    Dickey JW, Hopkins JW. Campus building arrangement using TOPAZ. Transp Res 1972; 6:59–68CrossRefGoogle Scholar
  19. 19.
    Hu TC, Kuh ES (ed). VLSI circuit layout: theory and design, IEEE Press, New York, 1985Google Scholar
  20. 20.
    Taillard E. Comparison of iterative searches for the quadratic assignment problem. Location Sci 1995; 3: 87–105MATHCrossRefGoogle Scholar
  21. 21.
    Krarup J, Pruzan PM. Computer-aided layout design. Math Program Study 1978; 9:75–94MathSciNetCrossRefGoogle Scholar
  22. 22.
    Burkard RE, Offermann J. Entwurf von schreibmaschinentastaturen mittels quadratischer zuordnungsprobleme. Z Oper Res 1977; 21:121–132Google Scholar
  23. 23.
    Burkard RE, Cela E, Pardalos PM, Pitsoulis L. The quadratic assignment problem. In: Du DZ, Pardalos PM (eds) Handbook of combinatorial optimization, Vol.3, Kluwer, Dordrecht, 1998, pp241–337Google Scholar
  24. 24.
    Sahni S, Gonzalez T. P-complete approximation problems. JACM 1976; 23:555-565Google Scholar
  25. 25.
    Taillard E. FANT: fast ant system. Tech. report IDSIA-46-98, Lugano, Switzerland, 1998Google Scholar
  26. 26.
    Bolte A, Thonemann UW. Optimizing simulated annealing schedules with genetic programming. Eur J Oper Res 1996; 92:402–416CrossRefGoogle Scholar
  27. 27.
    Taillard E. Robust taboo search for the QAP. Parallel Comput 1991; 17:443–455MathSciNetCrossRefGoogle Scholar
  28. 28.
    Ahuja RK, Orlin JB, Tiwari A. A greedy genetic algorithm for the quadratic assignment problem. Comput Oper Res 2000; 27:917–934MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Drezner Z. A new genetic algorithm for the quadratic assignment problem. INFORMS J Comput 2003 (in press)Google Scholar
  30. 30.
    Fleurent C, Ferland JA. Genetic hybrids for the quadratic assignment problem. In: Pardalos PM, Wolkowicz H (eds) Quadratic assignment and related problems. DIMACS series in discrete mathematics and theoretical computer science, vo1.16, AMS, Providence, 1994, pp 173–188Google Scholar
  31. 31.
    Lim MH, Yuan Y, Omatu S. Efficient genetic algorithms using simple genes exchange local search policy for the quadratic assignment problem. Comput Optim Appl 2000; 15:249–268MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Merz P, Freisleben B. Fitness landscape analysis and memetic algorithms for the quadratic assignment problem. IEEE Trans Evolut Comput 2000; 4:337–352CrossRefGoogle Scholar
  33. 33.
    Misevicius A. Genetic algorithm hybridized with ruin and recreate procedure: application to the quadratic assignment problem. In: Bramer M, Preece A, Coenen F (eds) Research and development in intelligent systems XIX. Proceedings of 22nd SGAI international conference on knowledge based systems and applied artificial intel1igence (Cambridge, UK), Springer, London, 2002, pp 163–176Google Scholar
  34. 34.
    Tate DM, Smith AE. A genetic approach to the quadratic assignment problem. Comput Oper Res 1995; 1:73–83CrossRefGoogle Scholar
  35. 35.
    Misevicius A. A tabu search algorithm for the quadratic assignment problem. Working paper, Kaunas University of Technology, Lithuania, 2002 (under review)Google Scholar
  36. 36.
    Burkard RE, Karisch S, Rendl F. QAPLIB-a quadratic assignment problem library. J Glob Optim 1997; 10:391–403Google Scholar
  37. 37.
    Stützle T. MAX-MIN ant system for quadratic assignment problems. Res. report AIDA97-04, Darmstadt University of Technology, Germany, 1997Google Scholar
  38. 38.
    Taillard E, Gambardella LM. Adaptive memories for the quadratic assignment problem. Tech. report IDSIA-87-97, Lugano, Switzerland, 1997Google Scholar

Copyright information

© Springer-Verlag London 2004

Authors and Affiliations

  • Alfonsas Misevicius
    • 1
  1. 1.Department of Practical InformaticsKaunas University of TechnologyKaunasLithuania

Personalised recommendations