A Decision Support System for Pollution Control in Cement Plants

  • Henrik Madsen
  • Poul Thyregod
  • Florin Popentiu Vlădicescu
  • Grigore Albeanu
  • Liviu Şerbănescu
Conference paper


The control of the pollution dynamics supposes the control of the whole pollution chain, starting from production planning and ending with pollution parameter measurements. This paper describes a software system that will scan the pollution activity specific for cement plants and will propose logistical solutions with the purpose of pollution control so that the costs of pollution reduction are minimized.


Logistic Module Optimization Module Atmos Environ Cement Plant Monitoring Network Design 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Douglas Daetz, Richard H. Pantell (eds). Environmental modeling: analysis and management, Hutchinson & Ross, 1974Google Scholar
  2. 2.
    de Wispelaere C (ed). Air Pollution modeling and its application, Plenum Press, NY, 1984Google Scholar
  3. 3.
    Larsen RI. A new mathematical model of air pollutant concentration averaging time and frequency. JAPCA 1969; 19: 24–30Google Scholar
  4. 4.
    Hickey HR, Rowe WD, Skinner F. A cost model for air quality monitoring systems. JAPCA 1971; 21: 689–693Google Scholar
  5. 5.
    Filippini F, Galliani G, Mantovani M, Screpanti F. Optimization criteria for configuring a network of monitoring stations. Environmental Software 1994; 9: 77–88CrossRefGoogle Scholar
  6. 6.
    Nakamori Y, Sawaragi Y. Interactive design of urban level air quality monitoring network. Atmos Environ 1984, 18: 793–799CrossRefGoogle Scholar
  7. 7.
    Cressie N. Geostatistics: A tool for environmental modelers. In: Goodchild MF, Parks BO, Steyaert LT (eds) Environmental Modeling with GIS. Oxford University Press, 1993, pp 414-421Google Scholar
  8. 8.
    EPA. Risk Assessment Methodologies for Toxic Air Pollutants, Environmental Protection Agency, 1995Google Scholar
  9. 9.
    Trujillo-Ventura A, Ellis JH. Multiobjective air pollution monitoring network design. Atmos Environ 1991; 25, A: 469–479CrossRefGoogle Scholar
  10. 10.
    Smith DG; Egan BA. Design of monitor networks to meet multiple criteria. JAPCA 1979; 29:710–714Google Scholar
  11. 11.
    Nakamori Y, Ikeda S, Sawaragi, Y. Design of air pollutant monitoring system by spatial sample stratification. Atmos. Environ. 1979; 13: 97–103CrossRefGoogle Scholar
  12. 12.
    Eschenauer H (ed). Multicriteria design optimization: procedures and applications. Springer-Verlag, 1990Google Scholar
  13. 13.
    Panos Pandalos M. Constrained global optimization algorithms and applications. LNCS, Springer-Verlag, 1987Google Scholar
  14. 14.
    Torn Aimo, Zilinskias A. Global optimization. LNCS, Springer-Verlag, 1983.Google Scholar
  15. 15.
    Albeanu G. A Monte Carlo approach for controlled search. Mathematics and Computers in Simulation 1997, 43: 223–228CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag London 2004

Authors and Affiliations

  • Henrik Madsen
    • 1
  • Poul Thyregod
    • 1
  • Florin Popentiu Vlădicescu
    • 2
  • Grigore Albeanu
    • 2
  • Liviu Şerbănescu
    • 3
  1. 1.The Technical University of Denmark, IMMLyngbyDenmark
  2. 2.University of OradeaOradeaRomania
  3. 3.Astronomical Institute of Romanian AcademyBucharestRomania

Personalised recommendations