Stochastic Effects of Potential Lightning Impact on Safety Systems

  • Velislav Varbanov
  • Ulrich Hauptmanns
  • Günter Wollenberg
  • Torsten Steinmetz
  • Ralf Zander
Conference paper


There is a general consensus that a transmission line under the ground is less prone to the induction effects caused by a nearby lightning flash. However, the low threshold operation energy levels of modern electronic equipment can be attained in the transmission line due to coupling of electromagnetic fields radiated by the lightning, even if the line is underground. There are numerous references, e.g. [1] – [4], in which the influence of a lightning discharge on above ground power lines and low-voltage installations is investigated. Yet, there is a lack of information on the behaviour of lines under the ground. Therefore a more detailed investigation of induction effects is required for this case.


Transmission Line Stochastic Simulation Stochastic Effect Lightning Discharge Direct Strike 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Diendorfer G. Induced voltage on an overhead line due to nearby lightning. IEEE Trans. Electromag. Compat. 1990; 32:292–299CrossRefGoogle Scholar
  2. 2.
    Nucci C, Rachidi F., Ianoz M., Mazzeti C. Lightning — induced voltages on overhead lines. IEEE Trans. Electromag. Compat. 1993; 35:75–86CrossRefGoogle Scholar
  3. 3.
    Rachidi F., Nucci C, Ianoz M, Mazzeti C. Influence of a loosy ground on lightning — induced voltages on overhead lines. IEEE Trans. Electromag. Compat. 1996; 38:250–264CrossRefGoogle Scholar
  4. 4.
    Galvan A., Cooray V., Scuka V. Interaction of electromagnetic fields from cloud and ground lightning flashes with an artificial low — voltage power installation. IEEE Trans. Electromag. Compat. 1999; 41:250–257CrossRefGoogle Scholar
  5. 5.
    Agrawal A., Price H., Gurbaxani S. Transient response of multi-conductor transmission lines excited by a non uniform electromagnetic field. IEEE Trans. Electromag. Compat. 1980;22:119–129CrossRefGoogle Scholar
  6. 6.
    CableMod User Guide. Simlab Software GmbH, Germany, Munich, 2002Google Scholar
  7. 7.
    Tesche F., Kälin A., Brändli B. et al. Estimates of lightning — induced voltage stresses within buried shielded conduits. IEEE Trans. Electromag. Compat. 1998; 40:492–504CrossRefGoogle Scholar
  8. 8.
    Tesche F., Ianoz M., Karlsson T. EMC analysis methods and computational models. Wiley, New York, 1997Google Scholar
  9. 9.
    Ripley B. Stochastic simulation. Wiley, New York, 1987CrossRefMATHGoogle Scholar
  10. 10.
    Martinez A., Byrnes A. Modeling dielectric-constant values of geologic materials: an aid to ground-penetrating radar data collection and interpretation. Kansas Geological Survey, 1930 Constant Avenue, Lawrence, KS 66047Google Scholar
  11. 11.
    Fisher R., Schnetzer G., Thottappillil R., Rakov V., Uman M., Goldberg J. Parameters of triggered lightning flashes in Florida and Alabama. J. Geophys. Res. 1993; 98: 22887–22902CrossRefGoogle Scholar
  12. 12.
    Cooray V. Underground electromagnetic fields generated by the return stokes of lightning flashes. IEEE Trans. Electromag. Compat. 2001; 43:75–84CrossRefGoogle Scholar
  13. 13.
    Berger K., Anderson R., Kroninger H. Parameters of lightning flashes. Electra 1975; 41: 23–37Google Scholar

Copyright information

© Springer-Verlag London 2004

Authors and Affiliations

  • Velislav Varbanov
    • 1
  • Ulrich Hauptmanns
    • 1
  • Günter Wollenberg
    • 1
  • Torsten Steinmetz
    • 1
  • Ralf Zander
    • 1
    • 2
  1. 1.Abteilung Anlagentechnik und AnlagensicherheitOtto-von-Guericke-Universität MagdeburgMagdeburgGermany
  2. 2.Kernkraftwerk Gundremmingen GmbHGermany

Personalised recommendations