Advertisement

Model Predictive Control and Hybrid Systems

  • E. F. Camacho
  • C. Bordons
Part of the Advanced Textbooks in Control and Signal Processing book series (C&SP)

Abstract

In most processes there are not only continuous variables but also variables that have a discrete nature. For a long time, the control of processes with discrete variables and the control of processes with continuous variables were considered to be two completely different things. On the one hand, the theories of finite state machines were used to control processes with discrete variables, and on the other hand, linear and nonlinear control theory was used for the control of continuous variables. The techniques for modelling and analysis of these types of systems are different. In the case of continuous systems, differential equations, transfer functions, etc., are used as modelling tools, while in the discrete counterpart, state transition graphs, Petri Nets, etc., are employed (see ). From the beginning of the 1990s there has been great interest in processes that have both discrete and continuous parts. Hybrid systems are dynamic systems with both continuous-state and discrete-state and event variables. That is, the plant has time-driven and event-driven dynamics, the controller affects both time-driven and event-driven components, and it may deal with continuous and/or discrete signals.

Keywords

Hybrid System Model Predictive Control Logical Predicate Boolean Variable Hybrid Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag London 2007

Authors and Affiliations

  • E. F. Camacho
    • 1
  • C. Bordons
    • 1
  1. 1.Escuela Superior de IngenierosUniversidad de SevillaSevillaSpain

Personalised recommendations