Tsallis’ Thermostatistics


This chapter starts with a discussion of the Tsallis entropy function. By the maximum entropy principle it leads to the Tsallis distribution. The relation with the q-exponential family is investigated. It is clarified by an explicit calculation for the two-level atom. Next follows a discussion of the two types of relative entropies found in the literature.


Relative Entropy Inverse Temperature Dual Exponential Function Prior Weight Linear Entropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abe, S.: A note on the q-deformation-theoretic aspect of the generalized entropies in nonextensive physics. Phys. Lett. A 224, 326–330 (1997) CrossRefMathSciNetGoogle Scholar
  2. 2.
    Abe, S.: q-deformed entropies and Fisher metrics. In: P. Kasperkovitz, D. Grau (eds.) Proceedings of The 5th International Wigner Symposium, August 25–29, 1997, Vienna, Austria, p. 66. World Scientific, Singapore (1998) Google Scholar
  3. 3.
    Borges, E., Roditi, I.: A family of nonextensive entropies. Phys. Lett. A 246, 399–402 (1998) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Campisi, M., Bagci, G.B.: Tsallis ensemble as an exact orthode. Phys. Lett. A 362, 11–15 (2007) CrossRefGoogle Scholar
  5. 5.
    Daróczy, Z.: Generalized information functions. Inform. Control 16, 36–51 (1970) MATHCrossRefGoogle Scholar
  6. 6.
    Havrda, J., Charvat, F.: Quantification method of classification processes: concept of structural α-entropy. Kybernetica 3, 30–35 (1967) MATHMathSciNetGoogle Scholar
  7. 7.
    Kaniadakis, G., Scarfone, A.: A new one parameter deformation of the exponential function. Physica A 305, 69–75 (2002) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Landsberg, P., Vedral, V.: Distributions and channel capacities in generalized statistical mechanics. Phys. Lett. A 247, 211–217 (1998) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Naudts, J.: Generalized thermostatistics and mean field theory. Physica A 332, 279–300 (2004) CrossRefMathSciNetGoogle Scholar
  10. 10.
    Naudts, J.: Continuity of a class of entropies and relative entropies. Rev. Math. Phys. 16, 809822 (2004); Errata. Rev. Math. Phys. 21, 947–948 (2009) CrossRefMathSciNetGoogle Scholar
  11. 11.
    Plastino, A., Plastino, A.: On the universality of thermodynamics’ Legendre transform structure. Phys. Lett. A 226, 257–263 (1997) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Rajagopal, A., Abe, S.: Implications of form invariance to the structure of nonextensive entropies. Phys. Rev. Lett. 83, 1711–1714 (1999) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Shiino, M.: H-theorem with generalized relative entropies and the Tsallis statistics. J. Phys. Soc. Jpn. 67(11), 3658–3660 (1998) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Suyari, H., Wada, T.: Multiplicative duality, q-triplet and (μ,ν,q)-relation derived from the one-to-one correspondence between the (μ,ν)-multinomial coefficient and Tsallis entropy S q. Physica A 387, 71–83 (2008) CrossRefMathSciNetGoogle Scholar
  15. 15.
    Tsallis, C.: Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 52, 479–487 (1988) MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Tsallis, C.: Generalized entropy-based criterion for consistent testing. Phys. Rev. E 58, 1442–1445 (1998) CrossRefGoogle Scholar
  17. 17.
    Tsallis, C., Mendes, R., Plastino, A.: The role of constraints within generalized nonextensive statistics. Physica A 261, 543–554 (1998) CrossRefGoogle Scholar
  18. 18.
    Yamano, T.: Information theory based on nonadditive information content. Phys. Rev. E 63, 046105 (2001) CrossRefGoogle Scholar
  19. 19.
    Yamano, T.: Source coding theorem based on a nonadditive information content. Physica A 305, 190–195 (2002) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Physics DepartmentUniversity of AntwerpAntwerpBelgium

Personalised recommendations