Advertisement

The Microcanonical Ensemble

  • Jan Naudts

Abstract

The harmonic oscillator is used to illustrate the ergodic theorem, which is the basis of statistical mechanics. The microcanonical ensemble is defined. Its entropy is discussed and is used to define the microcanonical temperature. Examples are given of microcanonical instabilities.

Keywords

Phase Space Harmonic Oscillator Ising Model Density Operator Isolate System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baeten, M., Naudts, J.: On the thermodynamics of classical microcanonical systems. arxiv:1009.1787 (2010)
  2. 2.
    Barré, J., Mukamel, D., Ruffo, S.: Inequivalence of ensembles in a system with long-range interactions. Phys. Rev. Lett. 87, 030601 (2001) CrossRefGoogle Scholar
  3. 3.
    Becker, R.: Theory of Heat. Springer-Verlag, Berlin, Heidelberg, New York (1967) Google Scholar
  4. 4.
    Behringer, H.: Critical properties of the spherical model in the microcanonical formalism. J. Stat. Mech. p. P06014 (2005) Google Scholar
  5. 5.
    Behringer, H., Pleimling, M.: Continuous phase transitions with a convex dip in the microcanonical entropy. Phys. Rev. E 74, 011108 (2006) CrossRefGoogle Scholar
  6. 6.
    Brody, D.: Comment on Typicality for Generalized Microcanonical Ensemble. Phys. Rev. Lett. 100, 148901 (2008) CrossRefGoogle Scholar
  7. 7.
    Brody, D., Hook, D., Hughston, L.: Microcanonical distributions for quantum systems. J. Phys. Conf. Ser. 67, 012025 (2007) CrossRefGoogle Scholar
  8. 8.
    Brody, D., Hughston, L.: The quantum canonical ensemble. J. Math. Phys. 39, 6502–6508 (1998) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Campa, A., Ruffo, S.: Microcanonical solution of the mean field φ 4-model: comparison with time averages at finite size. Physica A 369, 517–528 (2006) CrossRefGoogle Scholar
  10. 10.
    Campa, A., Ruffo, S., Touchette, H.: Negative magnetic susceptibility and nonequivalent ensembles for the mean field φ 4 spin model. Physica A 385, 233–248 (2007) CrossRefMathSciNetGoogle Scholar
  11. 11.
    Fine, B.V.: Typical state of an isolated quantum system with fixed energy and unrestricted participation of eigenstates. Phys. Rev. E 80, 051130 (2009) CrossRefGoogle Scholar
  12. 12.
    Gibbs, J.W.: Elementary principles in statistical mechanics. Reprint. Dover, New York (1960) MATHGoogle Scholar
  13. 13.
    Goldstein, S., Lebowitz, J., Tumulka, R., Zanghi, N.: Canonical typicality. Phys. Rev. Lett. 96, 050403 (2006) CrossRefMathSciNetGoogle Scholar
  14. 14.
    Goldstein, S., Lebowitz, J., Tumulka, R., Zanghi, N.: On the distribution of the wave function for systems in thermal equilibrium. J. Stat. Phys. 125, 1197–1225 (2006) CrossRefMathSciNetGoogle Scholar
  15. 15.
    Gross, D.: Statistical decay of very hot nuclei, the production of large clusters. Rep. Progr. Phys. 53, 605–658 (1990) CrossRefGoogle Scholar
  16. 16.
    Gross, D.: Microcanonical Thermodynamics: Phase transitions in ‘small’ systems. Lecture Notes in Physics, vol. 66. World Scientific (2001) CrossRefGoogle Scholar
  17. 17.
    Hahn, I., Kastner, M.: Application of large deviation theory to the mean field φ 4-model. Eur. Phys. J. B 50, 311–314 (2006) CrossRefGoogle Scholar
  18. 18.
    Hertz, P.: Über die mechanischen grundlagen der thermodynamik. Ann. Phys. (Leipzig) 338, 225–274, 537–552 (1910) CrossRefGoogle Scholar
  19. 19.
    Hilbert, S., Dunkel, J.: Nonanalytic microscopic phase transitions and temperature oscillations in the microcanonical ensemble: An exactly solvable one-dimensional model for evaporation. Phys. Rev. E 74, 011120 (2006) CrossRefGoogle Scholar
  20. 20.
    Hüller, A.: First order phase transitions in the canonical and the microcanonical ensemble. Z. Phys. B 93, 401–405 (1994) CrossRefGoogle Scholar
  21. 21.
    Jona-Lasinio, G.: Invariant measures under Schrödinger evolution and quantum statistical mechanics. In: F. Gesztesy, H. Holden, J. Jost, S. Paycha, M. Röckner, S. Scarlatti (eds.) Stochastic Processes, Physics and Geometry: New Interplays. I: A Volume in Honor of Sergio Albeverio. Canadian Mathematical Society Conference Proceedings, vol. 28, pp. 239–242 (2000) Google Scholar
  22. 22.
    Jona-Lasinio, G., Presilla, C.: On the statistics of quantum expectations for systems in thermal equilibrium. Voluntas International Journal of Voluntary and Nonprofit Organizations 844, 200 (2006). URL doi: 10.1063/1.2219363 MathSciNetGoogle Scholar
  23. 23.
    Kastner, M.: Microcanonical entropy of the spherical model with nearest-neighbour interactions. J. Stat. Mech. p. P12007 (2009) Google Scholar
  24. 24.
    Naudts, J., der Straeten, E.V.: A generalized quantum microcanonical ensemble. J. Stat. Mech. p. P06015 (2006) Google Scholar
  25. 25.
    Pearson, E.M., Halicioglu, T., Tiller, W.A.: Laplace-transform technique for deriving thermodynamic equations from the classical microcanonical ensemble. Phys. Rev. A 32, 3030–3039 (1985) CrossRefGoogle Scholar
  26. 26.
    Pleimling, M., Hüller, A.: Crossing the coexistence line at constant magnetization. J. Stat. Phys. 104, 971–989 (2001) MATHCrossRefGoogle Scholar
  27. 27.
    Reimann, P.: Typicality for generalized microcanonical ensemble. Phys. Rev. Lett. 99, 160404 (2007) CrossRefGoogle Scholar
  28. 28.
    Reimann, P.: Reimann replies. Phys. Rev. Lett. 100, 148902 (2008) CrossRefGoogle Scholar
  29. 29.
    Schlüter, A.: Zur Statistik klassischer Gesamtheiten. Z. Naturforschg. 3a, 350–360 (1948) Google Scholar
  30. 30.
    Schrödinger, E.: Statistical thermodynamics: a course of seminar lectures. Cambridge University Press (1948) Google Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Physics DepartmentUniversity of AntwerpAntwerpBelgium

Personalised recommendations