Advertisement

Constrained Optimization Using an Evolutionary Programming-based Cultural Algorithm

  • Carlos A. Coello Coello
  • Ricardo Landa Becerra

Abstract

In this paper, we propose the use of a domain knowledge extracted during the search of an evolutionary algorithm to improve its performance in constrained optimization problems. The approach is based on the concept of “cultural algorithms” and is shown to produce very good results at a low computational cost.

Keywords

Evolutionary Algorithm Acceptance Function Belief Space Robot Motion Planning Infeasible Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chung, Chan-Jin (1997). Knowledge-Based Approaches to Self-Adaptation in Cultural Algorithms. PhD thesis, Wayne State University, Detroit, Michigan.Google Scholar
  2. 2.
    Chung, Chan-Jin and Reynolds, Robert G. (1996). A Testbed for Solving Optimization Problems using Cultural Algorithms. In Lawrence J. Fogel, Peter J. Angeline and Thomas Back, editors, Evolutionary Programming V: Proceedings of the Fifth Annual Conference on Evolutionary Programming, Cambridge, Massachusetts. MIT Press.Google Scholar
  3. 3.
    Chung, Chan-Jin and Reynolds, Robert G. (1998). CAEP: An Evolution-based Tool for Real-Valued Function Optimization using Cultural Algorithms. Journal on Artificial Intelligence Tools, 7(3):239–292.CrossRefGoogle Scholar
  4. 4.
    Davis, Ernest (1987). Constraint propagation with interval labels. Artificial Intelligence, 32:281–331.MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Deb, Kalyanmoy (2000). An Efficient Constraint Handling Method for Genetic Algorithms. Computer Methods in Applied Mechanics and Engineering, 186(2/4):311–338.MATHGoogle Scholar
  6. 6.
    Durham,W.H. (1994). Co-evolution: Genes, Culture, and Human Diversity. Stanford University Press, Stanford, California.Google Scholar
  7. 7.
    Fogel, Lawrence J. (1999) Artificial Intelligence through Simulated Evolution. Forty Years of Evolutionary Programming. John Wiley & Sons, Inc., New York.Google Scholar
  8. 8.
    Hyvoenen, E. (1992). Constraint reasoning based on interval arithmetic-The tolerance propagation approach. Artificial Intelligence, 58:71–112.MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Jin, Xidong and Reynolds, Robert G. (1999) Using Knowledge-Based Evolutionary Computation to Solve Nonlinear Constraint Optimization Problems: a Cultural Algorithm Approach. In 1999 Congress on Evolutionary Computation, pages 1672–1678, Washington, D.C., July. IEEE Service Center.Google Scholar
  10. 10.
    Koziel, Slawomir and Michalewicz, Zbigniew (1999). Evolutionary Algorithms, Homomorphous Mappings, and Constrained Parameter Optimization. Evolutionary Computation, 7(1): 19–44.CrossRefGoogle Scholar
  11. 11.
    Latombe, Jean-Claude (1993). Robot Motion Planning. Kluwer Academic Publishers, Norwell, Massachusetts.Google Scholar
  12. 12.
    Michalewicz, Zbigniew (1995). A Survey of Constraint Handling Techniques in Evolutionary Computation Methods. In J. R. McDonnell, R. G. Reynolds and D. B. Fogel, editors, Proceedings of the 4th Annual Conference on Evolutionary Programming, pages 135–155. The MIT Press, Cambridge, Massachusetts.Google Scholar
  13. 13.
    Michalewicz, Zbigniew and Janikow, Cezary Z. (1991). Handling Constraints in Genetic Algorithms. In R. K. Belew and L. B. Booker, editors, Proceedings of the Fourth International Conference on Genetic Algorithms, pages 151–157, San Mateo, California. Morgan Kaufmann Publishers.Google Scholar
  14. 14.
    Michalewicz, Zbigniew and Schoenauer, Marc (1996). Evolutionary Algorithms for Constrained Parameter Optimization Problems. Evolutionary Computation, 4(1): 1–32.CrossRefGoogle Scholar
  15. 15.
    Mitchell, Tom (1978). Version Spaces: An Approach to Concept Learning. PhD thesis, Computer Science Department, Stanford University, Stanford, California.Google Scholar
  16. 16.
    Renfrew, A.C. (1994). Dynamic Modeling in Archaeology: What, When, and Where? In S. E. van der Leeuw, editor, Dynamical Modeling and the Study of Change in Archaelogy. Edinburgh University Press, Edinburgh, Scotland.Google Scholar
  17. 17.
    Reynolds, Robert G. (1994). An Introduction to Cultural Algorithms. In A. V. Sebald and L.J. Fogel, editors, Proceedings of the Third Annual Conference on Evolutionary Programming, pages 131–139, World Scientific, River Edge, New Jersey.Google Scholar
  18. 18.
    Reynolds, Robert G., Michalewicz, Zbigniew and Cavaretta, M. (1995). Using cultural algorithms for constraint handling in GENOCOP. In J. R. McDonnell, R. G. Reynolds and D.B. Fogel, editors, Proceedings of the Fourth Annual Conference on Evolutionary Programming, pages 298–305, MIT Press, Cambridge, Massachusetts.Google Scholar

Copyright information

© Springer-Verlag London 2002

Authors and Affiliations

  • Carlos A. Coello Coello
    • 1
  • Ricardo Landa Becerra
    • 1
  1. 1.CINVESTAV-IPN Departamento de Ingeniería Eléctrica Sección de ComputaciónMexicoGermany

Personalised recommendations