Adaptive Computing in Support of Traffic Management

  • Kalin Penev


The article presents an exploration of a novel optimisation method, called Free Search. Free Search is population-based and can be classified as an evolutionary computational method.

Free Search is examined by using a hard non-linear constrained optimisation problem. The experimental results of twenty and fifty dimensional variants of the test problem are presented and discussed.

The algorithm is also applied to a traffic management optimisation model. It explores how adaptive computing can support air traffic dispatchers, who attempt to satisfy requirements for safety and efficiency constrained by the environmental impacts. The results suggest that the Free Search can provide decision-making with optimised traffic information.


Particle Swarm Optimisation Search Space Local Search Differential Evolution Traffic Management 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Angeline P., (1998), Evolutionary Optimisation versus Particle Swarm Optimisation: Philosophy and Performance Difference, The 7-th Annual Conference on Evolutionary Programming, San Diego, USAGoogle Scholar
  2. 2.
    Bilchev G., I. Parmee, (1996), Constrained Optimisation With an Ant Colony Search Model, Proceedings of ACED’96, PEDC, University of Plymouth, UK.Google Scholar
  3. 3.
    Bilchev G., I. Parmee, (1995), The Ant Colony Metaphor for Searching Continuous Design Space, Proceedings of the AISB Workshop on Evolutionary Computation, University of Sheffield, UK, April 3-4.Google Scholar
  4. 4.
    Corne D., M. Dorigo, and F. Glover, (1999), New Ideas in Optimization. ISBN 007 7095065, McGraw-Hill InternationaGoogle Scholar
  5. 5.
    Goldberg D., (2001), Genetic Algorithms in Search, Optimisation, and Machine Learning, ISBN 0-201-15767-5, Addison-Wesley.Google Scholar
  6. 6.
    Dorigo M., G. Agazzi, G. Di Caro, L. Gambardella, R. Michel, M. Middendorf, T. Stutzle, E. Taillard, (1999) Part One, Ant Colony Optimization, in Editors Corne D., M. Dorigo, and F. Glover, New Ideas in Optimization. ISBN 007 7095065, McGraw-Hill International. (pp. 9–76).Google Scholar
  7. 7.
    Dorigo M., G. Di Caro, L. Gambardella, (1998), Ant Algorithms for Discrete Optimisation, TR 98-10, IRIDIA, University Libre de Bruxelles.Google Scholar
  8. 8.
    Eberhart R. and J. Kennedy, (1995), Particle Swarm Optimisation, Proceedings of the IEEE International Conference on Neural Networks, vol.4, 1942–1948.Google Scholar
  9. 9.
    Eiben, A. E., and J. E. Smith, 2003, Introduction to Evolutionary Computing, Springer, ISBN 3-540-40184-9, (pp 15–35).Google Scholar
  10. 10.
    EI-Beltagy M. A., and A. I. Keane, (1998), Optimisation for Multilevel Problems: A Comparison of Various Algorithms, In I.C. Parmee editor, Adaptive computing in design and manufacture, ISBN 3-540-76254-X Springer — Verlag London Limited. (pp. 111–120).Google Scholar
  11. 11.
    Eshelman, L. J., & Schaffer, J. D., (1993), Real-coded genetic algorithms and interval-schemata, Foundations of Genetic Algorithms 2, Morgan Kaufman Publishers, San Mateo, pp. 187–202.Google Scholar
  12. 12.
    Fogel G., (2000), Evolutionary Computation: Towards a New Philosophy of Machine Inteligence, Second Edition, IEEE Press, ISBN: 0-7803-5379-XGoogle Scholar
  13. 13.
    Ghasemi M.R., E. Hinton and S. Bulman, (1998), Performance of Genetic Algorithms for Optimization of Frame Structures, In I.C. Parmee editor, Adaptive computing in design and manufacture, ISBN 3-540-76254-X Springer-Verlag London Limited. (pp. 287–299).Google Scholar
  14. 14.
    Holland J., (1975), Adaptation In Natural and Artificial Systems, University of Michigan Press.Google Scholar
  15. 15.
    Keane A. J., (1995), Genetic algorithm optimization of multi-peak problems: studies in convergence and robustness, Artificial Intelligence in Engineering 9(2) (pp. 75–83).CrossRefGoogle Scholar
  16. 16.
    Keane A. J., (1996), A Brief Comparison of Some Evolutionary Optimization Methods, In V. Rayward-Smith, I. Osman, C. Reeves and G.D. Smith, J. Wiley (Editors), Modern Heuristic Search Methods, ISBN 0471962805 pp 255–272.Google Scholar
  17. 17.
    Michalewicz, Z. and Schoenauer, M., (1996), Evolutionary Algorithms for Constrained Parameter Optimization Problems, Evolutionary Computation, Vol.4, No.1, (pp.1–32).CrossRefGoogle Scholar
  18. 18.
    Michalewicz, Z. and Fogel, D., (2002), How to Solve It: Modern Heuristics, ISBN 3-540-66061-5 Springer-Verlag, Berlin, Heidelberg, New York.Google Scholar
  19. 19.
    Penev, K., (2001), GIS in Support of Traffic Management, MPhil thesis submitted in partial fulfilment of the requirements of The Nottingham Trent University, UK, August, (pp 5–23).Google Scholar
  20. 20.
    Penev, K., and Littlefair, G., (2003), Free Search — a Novel Heuristic Method, Proceedings of the PREP 2003, 14-16 April, Exeter, UK, (pp 133–134).Google Scholar
  21. 21.
    Penev, K., and Littlefair, G., (2003), Free Search — A Comprative Analysis, Submitted to Information Sciences, Special Issue on Genetic and Evolutionary Computing, Elsevier.Google Scholar
  22. 22.
    Price K., and R. Storn, (1997), Differential Evolution, Dr, Dobb’s Journal 22(4), (April), (pp. 18–24).Google Scholar
  23. 23.
    Price K., K. Chisholm, J. Lampinen, R. Storn,, I. Zelinka, (1999), Part Two Differential Evolution, in Editors Corne D., M. Dorigo, and F. Glover, New Ideas in Optimisation. ISBN 007 7095065, McGraw-Hill International (pp 77–158).Google Scholar
  24. 24.
    Schoenauer, M. and Michalewicz, Z., (1996), Evolutionary Computation at the Edge of Feasibility, Proceedings of the 4th Parallel Problem Solving from Nature, H. M. Voigt, W. Ebeling, I. Rechenberg, and H. P. Schwefel (Editors), Springer-Verlag, Lecture Notes in Computer Science, Vol.1141 (pp.245–254).Google Scholar
  25. 25.
    Smith K., (2001), Incompatible goals, uncertain information and conflicting incentives: the dispatch dilemma, Human Factor and Aerospace Safety, Ashgate Publishing 1(4), (pp. 361–380).Google Scholar

Copyright information

© Springer-Verlag London 2004

Authors and Affiliations

  • Kalin Penev
    • 1
  1. 1.Technology Research Centre, Faculty of TechnologySouthampton InstituteSouthampton

Personalised recommendations