Multidisciplinary Aircraft Conceptual Design Optimisation Using a Hierarchical Asynchronous Parallel Evolutionary Algorithm (HAPEA)

  • L. F. González
  • E. J. Whitney
  • K. Srinivas
  • K. C. Wong
  • J. Périaux


In this paper we present some results of continuing research into improving robustness speed and application of Hierarchical Parallel Asynchronous Evolution Algorithms (HAPEA) to multidisciplinary design optimisation (MDO) and aircraft conceptual design problems. The formulation and implementation of the HAPEA-MDO algorithm is described and can be regarded as an architecture that is applicable to either integrated or distributed system optimisation design for complex, non-linear and non-differentiable problems. In this paper the formulation for HAPEA-MDO will be described and applied to single and multi objective MDO problems. Two cases related to aircraft design are analysed. We compute the Nash and Pareto optimal configurations satisfying the specified criteria in both cases and show that the HAPEA approach provides very efficient solutions to the stated design problems.


Nash Equilibrium Design Variable Pareto Front Multiobjective Optimisation Multidisciplinary Design Optimisation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dasgupta D, Michalewicz Z, (1997) Evolutionary Algorithms in Engineering Applications. Springer-Verlag, Berlin, Heidelberg.MATHGoogle Scholar
  2. 2.
    Obayashi S, (1998) Multidisciplinary Design Optimization of Aircraft Wing Planform Based on Evolutionary Algorithms. Procs. IEEE International Conference on Systems, Man, and Cybernetics 1998, La Jolla, California.Google Scholar
  3. 3.
    Parmee I C and Watson A H, (1999) Preliminary Airframe Design Using Co-Evolutionary Multiobjective Genetic Algorithms. Procs. Genetic and Evolutionary Computation Conference, 2:1657–1665. W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela and R. E. Smith, editors, Orlando, Florida, USA, Morgan Kaufmann.Google Scholar
  4. 4.
    Raymer D, (2002) Enhancing Aircraft Conceptual Design Using Multidisciplinary Optimization. Department of Aeronautics, FLYG2002-2, Stockholm, KTH.Google Scholar
  5. 5.
    Deb K, (2003) Multi-Objective Optimization Using Evolutionary Algorithms, Wiley.Google Scholar
  6. 6.
    Pareto V, (1896) Cours d’Economie Politique, Rouge, Lausanne, Switzerland.Google Scholar
  7. 7.
    Nash J F, (1950), Equilibrium Points in N-Person Games. In Nat. Acad. Sci, USA, 36:46–49.MathSciNetGoogle Scholar
  8. 8.
    Sefrioui M, (1998) Algorithmes Evolutionnaires pour le calcul scientifique.Application à l’electromagnetisme et à la mécanique des fluides numériques, PhD thesis University Pierre et Marie Curie, Paris.Google Scholar
  9. 9.
    Sobieski J, Haftka R T, (1996) Multidisciplinary Aerospace Design Optimization: Survey of Recent Developments, AIAA Paper No. 96-0711.Google Scholar
  10. 10.
    Alexandrov N M, Lewis R M, (2000). Analytical and Computational Properties of Distributed Approaches to MDO, AIAA 2000–4718.Google Scholar
  11. 11.
    Wakunda J, Zell A, (2000) Median-selection for parallel steady-state evolution strategies. In Marc Schoenauer, Kalyanmoy Deb, Günter Rudolph, Xin Yao, Evelyne Lutton, Juan Julian Merelo, and Hans-Paul Schwefel, editors, ParallelProblem Solving from Nature-PPSN VI, pages 405–414, Berlin, Springer.CrossRefGoogle Scholar
  12. 12.
    Goldberg D, (1989) Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley.Google Scholar
  13. 13.
    Sefrioui M, Périaux J, Ganascia J-G, (1996) Fast Convergence Thanks to Diversity, L. J. Fogel and P. J. Angeline and T. Back editors, Procs. Fifth Annual Conference on Evolutionary Programming 1996, San Diego, California, IEEE Computer Society Press, MIT Press.Google Scholar
  14. 14.
    Coello C, Christiansen A, (1998) Two New GA-Based for Multiobjective Optimisation, In Civil Engineering Systems.Google Scholar
  15. 15.
    Hansen N, Ostermeier A, (2001) Completely Derandomized Self-Adaptation in Evolution Strategies, In Evolutionary Computation, 9(2): 159–195.CrossRefGoogle Scholar
  16. 16.
    Cantu-Paz E, (2000) Efficient and Accurate Parallel Genetic Algorithms. Kluwer Academic Pub.Google Scholar
  17. 17.
    Geist A, Beguelin A, Dongarra J, Jiang W, Manchek R and Sunderam V, (1994). PVM: Parallel Virtual Machine. A User’s Guide and Tutorial for Networked Parallel Computing. Massachusetts Institute of Technology.Google Scholar
  18. 18.
    Whitney E J, (2003) A Modern Evolutionary Technique for Design and Optimisation in Aeronautics. PhD Thesis, The University of Sydney.Google Scholar
  19. 19.
    McCullers A, (2003) FLOPS User’s Guide, Release 6.02, NASA Langley Research Center.Google Scholar

Copyright information

© Springer-Verlag London 2004

Authors and Affiliations

  • L. F. González
    • 1
  • E. J. Whitney
    • 1
  • K. Srinivas
    • 1
  • K. C. Wong
    • 1
  • J. Périaux
    • 2
  1. 1.The University of SydneySydneyAustralia
  2. 2.Dassault Aviation 78 Quai Marcel DassaultSaint-CloudFrance

Personalised recommendations