Advertisement

Mechanical Component Design for Multiple Objectives Using Generalized Differential Evolution

  • Saku Kukkonen
  • Jouni Lampinen

Abstract

In this paper an Evolutionary Algorithm, the Differential Evolution algorithm, and its extension for constrained multi-objective optimization are described. The described extension is tested with a set of four constrained multi-objective mechanical component design problems. Results are compared to results obtained with the elitist Non-Dominated Sorting Genetic Algorithm and the results show that the extension performs comparably to the elitist Non-Dominated Sorting Genetic Algorithm and is applicable for solving multi-objective mechanical component design problems subject to multiple constraints.

Keywords

Selection Rule Multiobjective Optimization Pareto Optimal Solution Constraint Function Constraint Violation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zitzler, E., Thiele, L.: An evolutionary algorithm for multiobjective optimization: The strength Pareto approach. Technical Report 43, Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH), Zürich, Switzerland (1998)Google Scholar
  2. 2.
    Deb, K.: Multi-Objective Optimization using Evolutionary algorithms. John Wiley & Sons, Chichester, England (2001)MATHGoogle Scholar
  3. 3.
    Pareto, V.: Cours D’Economie Politique. Libraire Droz, Geneve (1964 (the first edition in 1896))Google Scholar
  4. 4.
    Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston (1998)CrossRefGoogle Scholar
  5. 5.
    Storn, R., Price, K. V.: Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces. Technical report, ICSI (1995) [Online] Available: ftp.icsi.berkeley.edu/pub/techreports/1995/tr-95-012.ps.gz, 15.1.2004.Google Scholar
  6. 6.
    Storn, R., Price, K. V.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization 11 (1997) 341–359MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Corne, D., Dorigo, M., Glover, F.: New Ideas in Optimization. McGraw-Hill, London (1999)Google Scholar
  8. 8.
    Madavan, N. K.: Multiobjective optimization using a Pareto differential evolution approach. In: Proceedings of the 2002 Congress on Evolutionary Computation, CEC’02, Honolulu, Hawaii (2002) 1145–1150Google Scholar
  9. 9.
    Abbass, H. A., Sarker, R.: The Pareto differential evolution algorithm. International Journal on Artificial Intelligence Tools 11 (2002) 531–552CrossRefGoogle Scholar
  10. 10.
    Abbass, H. A.: The self-adaptive Pareto differential evolution algorithm. In: Proceedings of the 2002 Congress on Evolutionary Computation, CEC’02, Honolulu, Hawaii (2002) 831–836Google Scholar
  11. 11.
    Chang, C., Xu, D., Quek, H.: Pareto-optimal set based multiobjective tuning of fuzzy automatic train operation for mass transit system. IEE Proceedings on Electric Power Applications 146 (1999) 577–583CrossRefGoogle Scholar
  12. 12.
    Storn, R.: System design by constraint adaptation and differential evolution. IEEE Transactions on Evolutionary Computation 3 (1999) 22–34CrossRefGoogle Scholar
  13. 13.
    Wang, F. S., Chiou, J. P.: Differential evolution for dynamic optimization of differential-algebraic systems. In: Proceedings of the IEEE International Conference on Evolutionary Computation, ICEC’97, Indianapolis, IN (1997) 531–536Google Scholar
  14. 14.
    Chang, T. T., Chang, H. C.: Application of differential evolution to passive shunt harmonic filter planning. In: 8th International Conference On Harmonics and Quality of Power, Athens, Greece (1998) 149–153Google Scholar
  15. 15.
    Wang, F. S., Sheu, J. W.: Multiobjective parameter estimation problems of fer-mentation processes using a high ethanol tolerance yeast. Chemical Engineering Science 55 (2000) 3685–3695CrossRefGoogle Scholar
  16. 16.
    Lampinen, J.: A constraint handling approach for the differential evolution algorithm. In: Proceedings of the 2002 Congress on Evolutionary Computation, CEC’02, Honolulu, Hawaii (2002) 1468–1473Google Scholar
  17. 17.
    Lampinen, J.: DE’s selection rule for multiobjective optimization. Technical report, Lappeenranta University of Technology, Department of Information Technology (2001) [Online] Available: http://www.it.lut.fi/kurssit/03-04/010778000/MODE.pdf, 15.1.2004.Google Scholar
  18. 18.
    Lampinen, J.: Multi-constrained nonlinear optimization by the differential evolution algorithm. Technical report, Lappeenranta University of Technology, Department of Information Technology (2001) [Online] Available: http://www.it.lut.fi/kurssit/03-04/010778000/DECONSTR.PDF, 15.1.2004.Google Scholar
  19. 19.
    Deb, K.: An efficient constraint handling method for genetic algorithms. Computer Methods in Applied Mechanics and Engineering 186 (2000) 311–338CrossRefMATHGoogle Scholar
  20. 20.
    Deb, K., Pratap, A., Moitra, S.: Mechanical component design for multiple objectives using elitist non-dominated sorting GA. In: Proceedings of the Parallel Problem Solving from Nature VI (PPSN-VI). (2000) 859–868 Also available:http://www.iitk.ac.in/kangal/papers/tech-rep2.ps, 15.1.2004.Google Scholar
  21. 21.
    Palli, N., Azram, S., McCluskey, P., Sundararajan, R.: An interactive multistage epsilon-inequality constraint method for multiobjective optimization. ASME Journal of Mechanical Design 120 (1999) 678–686CrossRefGoogle Scholar
  22. 22.
    Miettinen, K., Mäkelä, M. M., Neittaanmäki, P., Périaux, J.: Evolutionary Algorithms in Engineering and Computer Science. John Wiley & Sons, Ltd (1999)Google Scholar

Copyright information

© Springer-Verlag London 2004

Authors and Affiliations

  • Saku Kukkonen
    • 1
  • Jouni Lampinen
    • 1
  1. 1.Department of Information TechnologyLappeenranta University of TechnologyLappeenrantaFinland

Personalised recommendations