Finite sample behaviour of the Hollander-Proschan goodness of fit with reliability and maintenance data

  • P. A. Kostagiolas
  • G. A. Bohoris
Conference paper


In maintenance and reliability everyday practices the data samples which are often made available are multiply censored, i.e. the times to failure are randomly mixed with incomplete lifetimes. This fact adds complexity when sound decisions are required to be made in identifying failure mechanisms, evaluating maintenance practices and/or manufacturing methods. Hollander & Proschan have derided a Goodness of Fit (GOF) test statistic which has a number of advantages, i.e. can accommodate multiply censored data, can be employed irrespective of the failure and censoring distributions, and finally is indeed an omnibus and straightforward method to compute. Although the test statistic has received attention in the literature of reliability and maintenance applications over the last two decades, only a limited investigation has been carried out in terms of its finite sample behavior. This paper investigates the usefulness of this particular GOF method within the reliability and maintenance context and provides a literature review of alternative approaches. Furthermore, the finite sample properties are investigated through extensive Monte Carlo Simulations, with the Weibull distribution when parameters are estimated from the data and a wide range of censoring percentages.


Weibull Distribution Incomplete Observation Scale Alternative Censor Survival Data Weibull Shape Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ansell J.I. & Phillips M.J. (1989) Practical Problems in the Statistical Analysis of Reliability Data (with discussion), Applied Statistics, 38(2), 205-247.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Nelson W. (1982) Applied Data Life Analysis, John Wiley and Sons, New York.MATHCrossRefGoogle Scholar
  3. 3.
    Waller L.A. & Turnbull B.W. (1992) Probability Plotting With Censored Data, The American Statistician, 46(1), 5-12.CrossRefGoogle Scholar
  4. 4.
    Hollander M. & Proschan F. (1979) Testing to Determine the Underlying Distribution Using Randomly Censored Data, Biometrics, 35, 393-401.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Efron B. (1967) The Two Sample Problem with Censored Data, Conference Proceedings. 5th Berkley Symposium on Mathematical Statistics and Probability edited by J. Newman, 4, 831-853, Berkley: University of California Press.Google Scholar
  6. 6.
    Lee E.T. (1992) Statistical Methods for Survival Data Analysis, John Wiley and Sons, New York.Google Scholar
  7. 7.
    Dodson B. (1994) Weibull Analysis, ASQC, Quality Press.Google Scholar
  8. 8.
    Kaplan E.L. & Meier P. (1958) Nonparametric Estimation from Incomplete Observations, Journal of the American Statistical Association, 53, 457-481.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Hollander M. & Pena E.A. (1992) A Chi-Squared Goodness-of-Fit Test for Randomly Censored Data, Journal of the American Statistical Association, 87(418), 458-463.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    D’Agostino R.B. & Stephens M.A. (1986) Goodness-of-Fit Techniques. New York: Marcel Dekker, INC.MATHGoogle Scholar
  11. 11.
    Gail M.H. & Ware J.H. (1979) Comparing Observed Life Table Data with a Known Survival Curve in the Presence of Random Censorship, Biometrics, 35, 385-391.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    O’Neill T.J.O. (1984) A Goodness-of-Fit Test for One-Sample Life Table Data, Journal of the American Statistical Association, 79(385), 194-199.CrossRefMathSciNetGoogle Scholar
  13. 13.
    Li G. (1995) On Nonparametric Likelihood Ratio estimation of survival probabilities for Censored Data, Statistics and Probability Letters, 25(2), 95-104.MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Mihalko D.P. & Moore D.S. (1980) Chi-Square Tests of Fit for Type II Censored Data, The Annals of Statistics, 8(3), 625-644.MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Mihalko D.P. (1993) Chi-Square Tests-of-Fit for Location-Scale Families Using Type-II Censored Data, IEEE Transactions on Reliability, 42(1), 76-80.MATHCrossRefGoogle Scholar
  16. 16.
    Habib M.G. & Thomas D.R. (1986) Chi-square goodness-of-fit tests for randomly censored data, The Annals of Statistics, 14(2), 759-765.MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Akritas M.G. (1988) Pearson-Type Goodness-of-Fit Tests The Univariate Case. Journal of the American Statistical Association, 83(401), 222-230.MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Hjort N.L. (1990) goodness-of-fit tests in models for life history data based on cumulative hazard rates, The Annals of Statistics, 18(3), 1221-1258.MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Li G. & Doss H. (1993) Generalized Pearson-Fisher Chi-square Goodness-of-fit tests, with applications to models with life history data, The Annals of Statistics, 21(2), 772-797.MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Kim J.H. (1993) Chi-Square goodness-of-fit tests for randomly censored data, The Annals of Statistics, 21(3), 1621-1639.MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Johnson V.E. (2004) A Bayesian χ2 test for goodness-of-fit, Annals of Statistics, 32, 2361-2384.MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Yin G. (2009) Bayesian goodness-if-fit test for censored data, Journal of Statistical Planning and Inference, 139, 1474-1483.MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Wozniak P.J. & Li X. (1990) Goodness-of-Fit for the two-parameter Weibull distribution with estimated parameters, Journal of Statistical Computation and Simulation, 34, 133-143.MATHCrossRefGoogle Scholar
  24. 24.
    Wozniak P. J. (1994) Power of Goodness of Fit Tests for the two-parameter Weibull distribution with estimated parameters, Journal of Statistical Computation and Simulation, 50, 153-161.CrossRefGoogle Scholar
  25. 25.
    Lawless J.F. (1982) Statistical Methods and Models for Lifetime Data, John Wiley and Sons, New York.MATHGoogle Scholar
  26. 26.
    Koziol J.A. & Green S.B. (1976) A Cramer-von Mises statistic for randomly censored data, Biometrika, 63(3), 465-474.MATHMathSciNetGoogle Scholar
  27. 27.
    Csorgo S. & Horvath L. (1981) On the Koziol-Green model for random censorship. Biometrika, 68(2), 391-401.MathSciNetGoogle Scholar
  28. 28.
    Pena E.A. (1998) Smooth goodness of-fit tests for composite hypothesis in hazard based models, Annals of Statistics, 26, 1935-1971.MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Chen H. S., Lai K., Ying Z., (2004) Goodness-of-fit tests and minimum power divergence estimators for survival data, Statistica Sinica, 14, 231-248.MATHMathSciNetGoogle Scholar
  30. 30.
    Ren J.-J. (2003) Goodness of fit-tests with interval censored data, Scandinavian Journal of Statistics, 30, 211-226.MATHCrossRefGoogle Scholar
  31. 31.
    Koziol J.A. (1980b) Goodness-of-fit tests for randomly censored data, Biometrika, 67(3), 693-696.MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Koziol J.A. & Byar D.P. (1975) Percentage Points of the Asymptotic Distributions of One and Two Sample K-S Statistics for Truncated or Censored Data, Technometrics, 17(4), 507-510.MATHCrossRefGoogle Scholar
  33. 33.
    Pettitt A.N. & Stephens M.A. (1976) Modified Cramer-von Mises statistics for censored data, Biometrika, 63(2), 291-298.MATHMathSciNetGoogle Scholar
  34. 34.
    Koziol J.A. (1980a) Percentage Points of the Asymptotic Distributions of One and Two Sample Kuiper Statistics for Truncated or Censored Data, Technometrics, 22(3), 437-442.MATHCrossRefGoogle Scholar
  35. 35.
    Fleming T.R., O’Fallon J.R. & O’Brien P.C. (1980) Modified Kolmogorov-Smirnov Test Procedures with Application to Arbitrary Right-Censored Data. Biometrics, 36, 607-625.MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Fleming T.R. & Harrington D.P. (1981) A Class of Hypothesis Tests for one and two sample censored survival data. Communications in Statistics-Theory and Methods, A10(8), 763-794.CrossRefMathSciNetGoogle Scholar
  37. 37.
    Nelson W. (1969) Hazard Plotting Methods for Incomplete Failure Data, Journal of Quality Technology, 1(1), 27-52.Google Scholar
  38. 38.
    Gastaldi T. (1991) Generalized two sample kolmogorov-smirnov test involving a possibly censored sample, Communications in Statistics-Simulation, 20(1), 365-373.MATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Gastaldi T. (1992) Testing a Hypothesis through an identity test, Communications in Statistics-Theory and Methods, 21(5), 1267-1272.MATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Gastaldi T. (1993) A Kolmogorov-Smirnov test procedure involving a possibly censored or truncated sample, Communication in Statistics-Theory and Methods, 22(1), 31-39.MATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Miller R.G. (1981) Survival Analysis, John Wiley and Sons, New York.MATHGoogle Scholar
  42. 42.
    Hahn G.J. & Meeker W.Q. (1993) Assumptions for Statistical Inference, The American Statistician, 47 (1), 1-11.CrossRefGoogle Scholar
  43. 43.
    Bohoris G.A. (1995) Effectiveness of the Comparative Reliability Assessment Techniques Evaluating Quality & Reliability in Engineering Design. International Journal of Reliability, Quality and Safety Engineering, 2(3), 309-326.CrossRefGoogle Scholar
  44. 44.
    Press W.H., Flannery B.P., Teukolsky S.A. & Vetterling W.T. (1986) Numerical Recipes, The Art of Scientific Computing, Cambridge University Press, Cambridge.MATHGoogle Scholar
  45. 45.
    Kleijnen J.P.C. & Groenendaal W. (1992) Simulation: A Statistical Perspective, John Wiley and Sons, Chichester.MATHGoogle Scholar
  46. 46.
    Kostagiolas, P. A. (2000) The Goodness of Fit Problem with Industrial Reliability Data, Ph.D thesis, Univ. of Birmingham.Google Scholar
  47. 47.
    Aho M., Bain L.J. & Engelhardt M. (1985) Goodness-of-Fit Tests for the Weibull Distribution with Unknown Parameters and Heavy Censoring. Journal of statistical Computation and Simulation, 21, 213-225.CrossRefGoogle Scholar
  48. 48.
    Bohoris G.A. (1994) Comparison of the Cumulative-Hazard and the Kaplan-Meier Estimators of the Survivor Function, IEEE Transactions on Reliability. 43(2), 230-232.CrossRefGoogle Scholar
  49. 49.
    Michael J.R. (1983) The stabilized probability plot, Biometrika, 70(1), 11-17.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • P. A. Kostagiolas
    • 1
  • G. A. Bohoris
    • 2
  1. 1.Department of Archive and Library ScienceIonian UniversityCorfuGreece
  2. 2.Department of Business AdministrationUniversity of PiraeusPiraeusGreece

Personalised recommendations