Disassembly process planning using Bayesian network

  • M. Godichaud
  • F. Pérès
  • A. Tchangani


The management of end-of-life systems becomes more and more important due to the awareness of their environmental impact. In this context, the disassembly process requires more attention with the ultimate goal to make profit. In this paper, we propose a new approach to determine optimal disassembly plan of an end-of-life system by using bayesian network. To take advantage of some existing approaches that use Petri Net to model such process, a Petri Net model is first established and then translated to Bayesian Network in order to take into account inevitable uncertainties associated to such process.


Bayesian Network Precedence Constraint Decision Node Conditional Probability Table Influence Diagram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Chen S., Oliver J., Chou S. 1997 Parallel disassembly by onion peeling. Journal of Mechanical Design, 119 (2), 267-274.CrossRefGoogle Scholar
  2. [2]
    Dutta L. (2006) Contribution à l’étude de la conduite des systèmes de désassemblage, PhD. Dissertation, Université de Franche-Comté, France.Google Scholar
  3. [3]
    Geiger D., Zussman E (1997) Probabilistic Reactive Disassembly Planning, Annals of the CIRP, 45(1), 49-52.CrossRefGoogle Scholar
  4. [4]
    Godichaud M. (2009) Outils d’aide la décision pour la sélection des filières de valorisation des produits de la déconstruction des systèmes en fin de vie : application au domaine aéronautique, PhD. Dissertation, Université de Toulouse, France.Google Scholar
  5. [5]
    Jensen F.V., Nielsen T.D. (2007) Bayesian network and decision graph, Springer.Google Scholar
  6. [6]
    Kanai. S, Sasaki. R., Kishinami. T. (1999) Representation of Product and Processes for Planning Disassembly, Shredding, and Material Sorting based on Graphs, Proceedings of IEEE International Symposium on Assembly and Task Planning, Port, Portugal, 123-128.Google Scholar
  7. [7]
    Kang J-G (2005) Non-linear disassembly planning for increasing the end-of-life value of products, Ph.D. dissertation, Ecole Polytechnique de Lausanne.Google Scholar
  8. [8]
    Lambert A.J.D. (1999) Linear Programming in Disassembly/Clustering Sequence Generation, Computers and Industrial Engineering, 36(4), 723-738.CrossRefGoogle Scholar
  9. [9]
    Laperrière L., Elmaraghy H. (1992) Planning of products assembly and disassembly, Annals of the CIRP, vol. 41(1), 5-9.CrossRefGoogle Scholar
  10. [10]
    Martinez M., Pham V. H., Favrel J. (1997) Dynamic Generation of Disassembly Sequences, Proceedings of 6th International Conference on EngineeringTechnologies and Factory Automation, 177-182.Google Scholar
  11. [11]
    S. Lauritzen, Nilsson D. (2001) Representing and solving decision problems with limited information, Management Science, 47(9), 1235-1251.CrossRefGoogle Scholar
  12. [12]
    Moore K., Gungor A. (1998) Gupta S. Disassembly Petri net generation in the presence of XOR precedence relationships, Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, San Diego, California, 13-18.Google Scholar
  13. [13]
    Murphy K.P. (2002) Dynamic Bayesian Networks: Representation, Inference and learning, Ph.D. Thesis, University of California, Berkeley.Google Scholar
  14. [14]
    Naïm P., Wuillemen P-H., Leray P., Pourret O., Becker A. (1999) Réseaux Bayésiens, Eyrolles.Google Scholar
  15. [15]
    Sanchoy, K. D., Sandeep N. (2002) Process planning for product disassembly, International Journal of Production Research 40(6), 1335-1355.CrossRefGoogle Scholar
  16. [16]
    Zussman E., Zhou M. (1999) A methodology for modeling and adaptative planning of disassembly processes, IEEE Trans. Robotics and Automation, 15(1) , 190-194.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • M. Godichaud
    • 1
  • F. Pérès
    • 1
  • A. Tchangani
    • 1
  1. 1.Laboratoire Génie de ProductionEcole Nationale d’Ingénieur de TarbesTarbes CedexFrance

Personalised recommendations