Measurement of gas content in two-phase flow with acoustic emission

  • A. Addali
  • S. Al-lababidi
  • H. Yeung
  • D. Mba


The two-phase liquid/gas slug flow regime phenomenon can be encountered over a range of gas and liquid flow rates. Monitoring of slugs and measurement of their characteristics, such as the gas void fraction, are necessary to minimise the disruption of downstream process facilities. This paper presents experimental results correlating Acoustic Emission measurements with Gas Void Fraction (GVF) in a two-phase water / air flow regime. It is concluded that the measurements of Acoustic Emission offer a complimentary means of measuring the GVF non-intrusively.


Acoustic Emission Acoustic Emission Signal Slug Flow Acoustic Emission Sensor Acoustic Emission Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kordyban, E. S. and Ranov, T. 1970. Mechanism of Slug Formation in Horizontal Two-Phase Flow. Journal of Basic Engineering. 92, 857-864.CrossRefGoogle Scholar
  2. 2.
    Graham, B; Wallis, G. B. and Dobson, J. E. 1973. The onset of slugging in horizontal stratified air-water flow. International Journal of Multiphase Flow, 1(1), 173-193CrossRefGoogle Scholar
  3. 3.
    Taitel, Y. and Dukler, A. E. ,1976. A model for predicting flow regime transitions in horizontal and near horizontal gas-flow. Journal of American Institute of Chemical Engineering. 22(1), 47-55.Google Scholar
  4. 4.
    Mishima, K. and Ishii, M. 1980. Theoretical prediction ofonset of horizontal slug flow. Journal of Fluids Engineering, Transactions of the ASME . 102, 441-445.CrossRefGoogle Scholar
  5. 5.
    Nydal, O.J., Pintus, S. and Andreussi, P. ,1992. Statistical characterisation of slug flow in horizontal pipes. International Journal of Multiphase Flow, 18(3), 439-453.MATHCrossRefGoogle Scholar
  6. 6.
    Barnea, D. and Taitel, Y., 1993. A model for slug length distribution in gas-liquid slug flow. International Journal of Multiphase Flow, 19(5), 829–838.MATHCrossRefGoogle Scholar
  7. 7.
    Fan, Z., Lusseyran, F. and Hanratty, T. J. 1993a. Initiation of slugs in horizontal gas-liquid flows. Journal of American Institute of Chemical Engineering . 39, 1741-1753.Google Scholar
  8. 8.
    Hale, C. P. 2000. Slug Formation, Growth and Decay in Gas-Liquid Flow, PhD Thesis, Imperial College, London, UK, 2000.Google Scholar
  9. 9.
    Strasberg M., 1956. Gas Bubbles as Sources ofSound in Liquids. The Journal of the Acoustic Society of America,28(1) .Google Scholar
  10. 10.
    ISO 22096, 2007, "Condition Monitoring and Diagnostics of Machines. Acoustic Emission,".Google Scholar
  11. 11.
    Pao, Y-H., Gajewski, R.R. and Ceranoglu, A.N. ,1979. Acoustic emission and transient waves in an elastic plate, J. Acoust. Soc. Am. 65(1), 96 –102.MATHCrossRefGoogle Scholar
  12. 12.
    Pollock AA, Acoustic Emission Inspection, Physical Acoustics Corporation, Technical Report, 1989, TR-103-96-12/89.Google Scholar
  13. 13.
    Mathews, J. R. 1983, Acoustic emission, Gordon and Breach Science Publishers Inc.,New York., ISSN 0730-7152.Google Scholar
  14. 14.
    Mba, D., and Rao, R. B. K. N., 2006. Development of Acoustic Emission Technology for Condition Monitoring and Diagnosis of Rotating Machines: Bearings, Pumps, Gearboxes, Engines, and Rotating Structures, Shock and Vibration Digest, 38(1) pp. 3-16.CrossRefGoogle Scholar
  15. 15.
    J.Z. Sikorska and D. Mba, Truth, Lies Acoustic Emission and Process Machines, Journal of Mechanical Process Engineering, Part E, IMechE, Volume 222, Number 1, 1-19, 2008.CrossRefGoogle Scholar
  16. 16.
    Bragg Sir W. H., 1921. The World of Sound .London, Bell, pp 69-74.Google Scholar
  17. 17.
    Minnaert, M. 1933. On musical air-bubbles and the sounds of running water. Philosophical Magazine, 16, 235}248.Google Scholar
  18. 18.
    Leighton, T. G. 1994. The acoustic bubble. London: Academic Press.Google Scholar
  19. 19.
    Waheed. A. Al-Masry, Emad M. Ali and Yhya M. Aqeel. , 2005. Determination of Bubble Characteristics in Bubble Columns using Statistical Analysis of Acoustic Sound Measurements. IchemE, 83(A10), 1196-1207.Google Scholar
  20. 20.
    Manasseh R 1997. Acoustic sizing of bubbles at moderate to high bubbling rates. 4 th world conference on experimental heat transfer, fluid mechanics and thermodynamics, pp 943-947 Bruxelles, Belgium.Google Scholar
  21. 21.
    Derakhshan, O., J. Rechard Houghton, R. Keith Jones, 1989. Cavitation Monitoring of Hydroturbines with RMS Acoustic Emission Measurements. World Meeting on Acoustic Emission , p305-315.Google Scholar
  22. 22.
    Clayton T. Crowe, 2005. Multiphase Flow Handbook, Taylor and FrancisGoogle Scholar
  23. 23.
    Xie, C.G., Stott, A. L., Plaskowski, A., and Beck.,M. S., 1990. Design ofCapacitance Electrodes for Concentration Measurement of Two-Phase Flow. Meas. Science & Technology , p.65-78.Google Scholar
  24. 24.
    Andreussi, P., Donfrancesco, Di, and Messia, M.,1988 . An Impedance Method for the Measurement of Liquid Holdup in Two-Phase Flow. Int. J. Multiphase Flow, 14,777–787.CrossRefGoogle Scholar
  25. 25.
    Abouelwafa, M.S.A., and Kendall, E.J.M.,1980. The measurement of Component Rations In Multiphase Systems Using Gamma Ray Attenuation. J. of Phys.E:Sci. Instrum. Vol 13, pp 341-5.CrossRefGoogle Scholar
  26. 26.
    Merilo,M., Dechene, R.L.,and Cichowlas, W.M. Void Fraction Measurement with a Rotating Electric Field Conductance Gauge. ASME J’ Heat Transfer 99, p.330-332, 1977.CrossRefGoogle Scholar
  27. 27.
    Andreussi, P. and Bendiksen, K. H., 1989. An Investigation of void fraction in liquid slugs for horizontal and inclined gas-liquid pipe flow. International Journal of Multiphase Flow, 15(6), 937-946.CrossRefGoogle Scholar
  28. 28.
    Fossa, M., Guglielmini, G., and Marchitto, A., 2003. Intermittent flow Parameters from Void Fraction Analysis. Journal of Flow Measurement and Instrumentation, 14, 161–168.CrossRefGoogle Scholar
  29. 29.
    Fossa, M. (1998). Design and Performance of a Conductance Probe for Measuring the Liquid Fraction in Two-Phase Gas-Liquid Flows. Journal of Flow Measurement and Instrumentation, 9, 103-109. A.CrossRefGoogle Scholar
  30. 30.
    Addali, S. Al-Lababidi, D. Mba, H Yeung, Observations of Acoustic Emission in two-phase flow, 22 nd International Congress and Exhibition on Condition Monitoring and Diagnostic Engineering Management (COMADEM 2008), Prague, Czech Republic,11 th – 13 th June 2008. ISBN 978-80-254-2276-2, 3-10.Google Scholar
  31. 31.
    Adamson, A.W., 1990. Physical Chemistry of Surfaces, fifth ed. John Willey and Sons Inc.Google Scholar
  32. 32.
    Brauner, N., Ullmann, A., 2004. Modelling of gas entrainment from Taylor bubbles. Part B: A stationary bubble. Int. J.Multiphase Flow Vol. 30, pp. 273-290,MATHCrossRefGoogle Scholar
  33. 33.
    Barnea, D., Shoham, O., Taitel, Y., 1982. Flow pattern transition for vertical downward two phase flow. Chem. Eng. Sci. 37, 741–744.CrossRefGoogle Scholar
  34. 34.
    Zhang, H.-Q., Wang, Q., Sarica, C., and Brill, J. P., 2003. Unified Model for Gas-Liquid Pipe Flow Via Slug Dynamics—Part 2: Model Validation,. ASME J. Energy Resour. Technol., 125,pp.266-273CrossRefGoogle Scholar
  35. 35.
    Beggs, H. D., and Brill, J. P., 1973, ‘‘A Study of Two-Phase Flow in Inclined Pipes,’’ Trans. AIME, 255, p. 607.Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • A. Addali
    • 1
  • S. Al-lababidi
    • 1
  • H. Yeung
    • 1
  • D. Mba
    • 1
  1. 1.School of EngineeringCranfield UniversityCranfieldUK

Personalised recommendations