Finite Element Method for Electromigration Study

Part of the Springer Series in Reliability Engineering book series (RELIABILITY)


In Chap. 3, we introduce the basic concept and the general theory of finite element method (FEM) for electrical, thermal, mechanical, and coupled-field multi-physics analysis. EM is a complicated physical and material phenomenon that involves the analysis of electro-thermo-mechanical-coupled field analysis and governed by various partial differential equations. FEM is able to solve the partial differential equation and handle complex geometries (and boundaries) with relative ease. Therefore, several EM studies employ the FEM for more complete investigation on different interconnect structures. In this chapter, we will provide an overview on the application of FEM for EM study.


Hydrostatic Stress Void Growth Void Nucleation Metal Line Simulation Methodology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kondo S, Hinode K (1995) High-resolution temperature measurement of void dynamics induced by electromigration in aluminum metallization. Appl Phys Lett 67:1606CrossRefGoogle Scholar
  2. 2.
    Tan CM, Zhang G, Gan ZH (2004) Dynamic study of the physical process in the intrinsic line electromigration of deep-submicron copper and aluminum interconnects. IEEE Trans Dev Mater Reliab 4:450CrossRefGoogle Scholar
  3. 3.
    Sasagawa K, Nakamura N, Saka M, Abe H (1998) A new approach to calculate atomic flux divergence by electromigration. Trans ASME J Electron Pack 120:360CrossRefGoogle Scholar
  4. 4.
    Sasagawa K, Naito K, Saka M, Abe H (1999) A method to predict electromigration failure of metal lines. J Appl Phys 86:6043CrossRefGoogle Scholar
  5. 5.
    Sasagawa K, Nakamura N, Saka M, Abe H (2002) Governing parameter for electromigration damage in the polycrystalline line covered with a passivation layer. J Appl Phys 91:1882CrossRefGoogle Scholar
  6. 6.
    Huntington HB, Grone AR (1961) Current-induced marker motion in gold wires. J Phys Chem Solids 20:76–87CrossRefGoogle Scholar
  7. 7.
    Lloyd JR, Smith PM, Prokop GS (1982) The role of metal and passivation defects in electromigration-induced damage in thin film conductors. Thin Solid Films 93:385CrossRefGoogle Scholar
  8. 8.
    Rzepka S, Meusel E, Korhonen MA, Li C-Y (1999) 3-D finite element simulator for migration effects due to various driving forces in interconnect lines. In: AIP (ed) Stress-induced phenomena in metallization: fifth international workshop, vol 491, pp 150–161Google Scholar
  9. 9.
    Fick A (1855) Ueber Diffusion. Pogg Ann Phys Chem 170(4. Reihe 94):59–86Google Scholar
  10. 10.
    Dalleau D, Weide-Zaage K (2001) Three-dimensional voids simulation in chip metallization structures: a contribution to reliability evaluation. Microelectron Reliab 41:1625–1630CrossRefGoogle Scholar
  11. 11.
    Weide-Zaage K, Dalleau D, Danto Y, Fremont H (2007) Dynamic void formation in a DD-copper-structure with different metallization geometry. Microelectron Reliab 47:319CrossRefGoogle Scholar
  12. 12.
    Dalleau D, Weide-Zaage K, Danto Y (2003) Simulation of time depending void formation in copper, aluminum and tungsten plugged via structures. Microelectron Reliab 43:1821CrossRefGoogle Scholar
  13. 13.
    Tan CM, Roy A (2006) Investigation of the effect of temperature and stress gradients on accelerated EM test for Cu narrow interconnects. Thin Solid Films 504:288CrossRefGoogle Scholar
  14. 14.
    Tan CM, Li W, Tan KT, Low F (2006) Development of highly accelerated electromigration test. Microelectron Reliab 46:1638CrossRefGoogle Scholar
  15. 15.
    Tan CM, Hou Y, Li W (2007) Revisit to the finite element modeling of electromigration for narrow interconnects. J Appl Phys 102:033705CrossRefGoogle Scholar
  16. 16.
    Tan CM, Roy A (2007) Electromigration in ULSI interconnects. Mater Sci Eng Rev 58:1–75CrossRefGoogle Scholar
  17. 17.
    Li W, Tan CM (2007) Enhanced finite element modelling of Cu electromigration using ANSYS and matlab. Microelectron Reliab 47:1497–1501CrossRefGoogle Scholar
  18. 18.
    Shen Y-L, Ramamurty U (2003) Temperature-dependent inelastic response of passivated copper films: experiments, analyses, and implications. J Vac Sci Technol B 21:1258–1264CrossRefGoogle Scholar
  19. 19.
    Tan CM, Roy A, Vairagar AV, Krishnamoorthy A, Mhaisalkar SG (2005) Current crowding effect on copper dual damascene via bottom failure for ULSI applications. IEEE Trans Dev Mater Reliab 5(2):198CrossRefGoogle Scholar
  20. 20.
    Pyun JW, Baek W-C, Im J, Ho PS, Smith L, Neuman K, Pfeiler K (2006) Effect of barrier process on electromigration reliability of Cu/porous low-k interconnects. J Appl Phys 100:023532CrossRefGoogle Scholar
  21. 21.
    Arnaud L, Tartavel G, Gerger T, Mariolle D, Gobil Y, Touet I (2000) Microstructure and electromigration in copper damascene lines. Microelectron Reliab 40:77CrossRefGoogle Scholar
  22. 22.
    Glasow AV, Fischer AH, Steinlesberger G (2003) Using the temperature coefficient of the resistance (TCR) as early reliability indicator for stress voiding risks in Cu interconnects. In: IEEE 41st annual international reliability physics symposium (IRPS) proceedingsGoogle Scholar
  23. 23.
    Lloyd JR, Clemens JJ, Snede S (1999) Copper metallization reliability. Microelectron Reliab 39:1595–1602CrossRefGoogle Scholar
  24. 24.
    Shiley CG (1985) Steady-state temperature profiles in narrow thin-film conductors. J Appl Phys 57:777–784CrossRefGoogle Scholar
  25. 25.
    Niwa H, Yagi H, Tsuchikawa H, Masaharu K (1990) Stress distribution in an aluminum interconnect of very large scale integration. J Appl Phys 68:328–333CrossRefGoogle Scholar
  26. 26.
    Kreyszig E (1993) Advanced engineering mathematics, 7th edn. Wiley, New YorkMATHGoogle Scholar
  27. 27.
    Gan ZH, Shao W, Mhaisalkar SG, Chen Z, Li H, Tu KN, Gusak AM (2006) Reservoir effect and the role of low current density regions on electromigration lifetimes in copper interconnects. J Mater Res 21:2241–2245CrossRefGoogle Scholar
  28. 28.
    Shao W, Vairagar AV, Tung CH, Xie ZL, Krishnamoorthy A, Mhaisalkar SG (2005) Electromigration in copper damascene interconnects: reservoir effects and failure analysis. Surf Coat Technol 198:257–261CrossRefGoogle Scholar
  29. 29.
    Duan QF, Shen Y-L (2000) On the prediction of electromigration voiding using stress-based modeling. J Appl Phys 87:4039–4041CrossRefGoogle Scholar
  30. 30.
    Ogawa ET, Lee K-D, Matsuhashi H, Ko K-S, Justison PR, Ramamurthi AN, Bierwag AJ, Ho PS, Blaschke VA, Havemann RH (2001) Statistics of electromigration early failures in Cu/oxide dual-damascene interconnects. In Proceedings of the Conference 39th IEEE/IRPS, ed, Orlando, FL, USA, pp 341–349Google Scholar
  31. 31.
    Fischer AH, Glasow AV, Penka S, Ungar F (2002) Electromigration failure mechanism studies on copper interconnects. In: Interconnect technology conference, proceedings of the IEEE 2002 international, ed, pp 139–141Google Scholar
  32. 32.
    Ang D, Ramanujan RV (2006) Hydrostatic stress and hydrostatic stress gradients in passivated copper interconnects. Mater Sci Eng A 423:157–165CrossRefGoogle Scholar
  33. 33.
    Vairagar AV, Mhaisalkar SG, Meyer MA, Zschech E, Krishnamoorthy A (2005) Reservoir effect on electromigration mechanisms in dual-damascene Cu interconnect structures. Microelectron Eng 82:675CrossRefGoogle Scholar
  34. 34.
    Padhi D, Dixit G (2003) Effect of electron flow direction on model parameters of electromigration-induced failure of copper interconnects. J Appl Phys 94:6463–6467CrossRefGoogle Scholar
  35. 35.
    Shen Y-L, Guo YL, Minor CA (2000) Voiding induced stress redistribution and its reliability implications in metal interconnects. Acta Mater 48:1667–1678CrossRefGoogle Scholar
  36. 36.
    Vairagar AV, Mhaisalkar SG, Krishnamoorthy A (2004) Microelectron Reliab 44(5):747CrossRefGoogle Scholar
  37. 37.
    Fu CM, Tan CM, Wu SH, Yao HB (2010) Width dependence of the effectiveness of reservoir length in improving electromigration for Cu/low-k interconnects. Microelectronics Reliab 50(9–11):1332–1335CrossRefGoogle Scholar
  38. 38.
    Korhonen MA, Black RD, Li C-Y (1993) Stress evolution due to electromigration in confined metal lines. J Appl Phys 73:3790–3799CrossRefGoogle Scholar
  39. 39.
    Tan CM, Raghavan N, Roy A (2007) Application of gamma distribution in electromigration for submicron interconnects. J Appl Phys 102:103703CrossRefGoogle Scholar
  40. 40.
    Smy TJ, Winterton SS, Brett MJ (1993) A Monte Carlo computer simulation of electromigration. J Appl Phys 73:2821CrossRefGoogle Scholar
  41. 41.
    Dew SK, Smy T, Brett MJ (1992) Simulation of elevated temperature aluminum metallization using SIMBAD. IEEE Trans Electron Dev 39:1599CrossRefGoogle Scholar
  42. 42.
    Tait RN, Dew SK, Smy T, Brett MJ (1990) Ballistic simulation of optical coatings deposited over topography. In: SPIE international symposium on modeling of optical thin films II, Bellingham, WA, p 112Google Scholar
  43. 43.
    Lozowski EP, Brett MJ, Tait RN, Smy T (1991) Simulating giant hailstone structure with a ballistic aggregation model. Q J R Meteorol Soc 117:427CrossRefGoogle Scholar
  44. 44.
    Bruschi P, Nannini A, Piotto M (2000) Three-dimensional Monte Carlo simulations of electromigration in polycrystalline thin films. Comput Mater Sci 17:299CrossRefGoogle Scholar
  45. 45.
    Bruschi P, Cagoni P, Nannini A (1997) Temperature-dependent Monte Carlo simulations of thin metal film growth and percolation. Phys Rev B 55:7955CrossRefGoogle Scholar
  46. 46.
    Amar JG, Family F, Amar G (1996) Kinetics of submonolayer and multilayer epitaxial growth. Thin Solid Films 272:208CrossRefGoogle Scholar
  47. 47.
    Vairagar AV, Krishnamoorthy A, Tu KN, Mhaisalkar SG, Gusak AM, Meyer MA (2004) In situ observation of electromigration-induced void migration in dual-damascene Cu interconnect structures. Appl Phys Lett 85:2502CrossRefGoogle Scholar
  48. 48.
    Zaporozhets TV, Gusak AM, Tu KN, Mhaisalka SG (2005) Three-dimensional simulation of void migration at the interface between thin metallic film and dielectric under electromigration. Appl Phys Lett 98:103508Google Scholar
  49. 49.
    Roy A, Tan CM, Kumar R, Chen XT (2005) Effect of test condition and stress free temperature on the electromigration failure of Cu dual damascene submicron interconnect line-via test structures. Microelectron Reliab 45:1443CrossRefGoogle Scholar
  50. 50.
    Greenabaum B, Sauter AI, Flinn PA, Nix WD (1991) Stress in metal lines under passivation; comparison of experiment with finite element calculations. Appl Phys Lett 58:1845CrossRefGoogle Scholar
  51. 51.
    Kilijanski MS, Shen Y-L (2002) Analysis of thermal stresses in metal interconnects with multilevel structures. Microelectron Reliab 42:259CrossRefGoogle Scholar
  52. 52.
    Park Y-B, Jeon IS (2003) Mechanical stress evolution in metal interconnects for various line aspect ratios and passivation dielectrics. Microelectronics Eng 69:26CrossRefGoogle Scholar
  53. 53.
    Huang JS, Yeh ECC, Zhang ZB, Tu KN (2002) The effect of contact resistance on current crowding and electromigration in ULSI multi-level interconnects. Material Chem Phys 77:377CrossRefGoogle Scholar
  54. 54.
    Atkinson RR (2003) The State University of New Jersey, Ph.D. thesis, New Brunswick, RutgersGoogle Scholar
  55. 55.
    Liu LM, Wang SQ, Ye HQ (2004) First-principles study of polar Al/TiN(1 1 1) interfaces. Acta Mater 52:3681CrossRefGoogle Scholar
  56. 56.
    Smith JR, Zhang W (2000) The connection between ab initio calculations and interface adhesion measurements on metal/oxide systems: Ni/Al2O3 and Cu/Al2O3. Acta Mater 48:4395CrossRefGoogle Scholar
  57. 57.
    ANSYS, Theory reference and reference thereinGoogle Scholar
  58. 58.
    Guerard BV, Peisl H, Zitzmann R (1974) Appl Phys B 3:37CrossRefGoogle Scholar
  59. 59.
    Carling KM, Wahnstrom G, Mattsson TR, Sandberg N, Grimvall G (2003) Vacancy concentration in Al from combined first-principles and model potential calculations. Phys Rev B 67:054101CrossRefGoogle Scholar
  60. 60.
    Prybyla JA, Riege SP, Grabowski SP, Hunt AW (1998) Temperature dependence of electromigration dynamics in Al interconnects by real-time microscopy. Appl Phys Lett 73:1083CrossRefGoogle Scholar
  61. 61.
    Shao W (2006) Investigation of surface and microstructure effect on electromigration of dual damascene Cu interconnects. Nanyang Technological UniversityGoogle Scholar
  62. 62.
    Li W, Tan CM, Hou Y (2007) Dynamic simulation of electromigration in polycrystalline interconnect thin film using combined Monte Carlo algorithm and finite element modeling. J Appl Phys 101:104314CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited  2011

Authors and Affiliations

  • Cher Ming Tan
    • 1
  • Zhenghao Gan
    • 2
  • Wei Li
    • 3
  • Yuejin Hou
    • 1
    • 4
  1. 1.School of Electrical & Electronic EngineeringNanyang Technological UniversitySingaporeSingapore
  2. 2.Technology Research & DevelopmentSemiconductor Manufacturing International (Shanghai) Corp.ShanghaiPeople’s Republic of China
  3. 3.Singapore Institute of Manufacturing TechnologySingaporeSingapore
  4. 4.SingaporeSingapore

Personalised recommendations