Skip to main content

Part of the book series: Springer Series in Reliability Engineering ((RELIABILITY))

  • 1358 Accesses

Abstract

The complexity of the physics of electromigration and the stress-induced voiding can be seen in Chap. 2. In order to model the physics realistically in today’s interconnects so as to obtain better understanding of the physics and to identify key parameters, FEM is needed as pointed out in Chap. 2. To begin the discussion on FEM applications in electromigration and stress-induced voiding, let us have a basic understanding on the FEM. For readers familiar with FEM, this chapter may be skipped.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Courant R (1943) Variational methods for the solution of problems in equilibrium and vibrations. Bull Am Math Soc 49:1–23

    Article  MATH  MathSciNet  Google Scholar 

  2. Turner MJ, Clough RW, Martin HC, Topp LJ (1956) Stiffness and deflection analysis of complex structures. J Aeronaut Sci 23:805–824

    Google Scholar 

  3. Noor AK (1991) Bibliography of books and monographs on finite element technology. Appl Mech Rev 44:307–317

    Article  Google Scholar 

  4. Moes N, Cloirec M, Cartraud P, Remacle J-F (2003) A computational approach to handle complex microstructure geometries. Comput Methods Appl Mech Eng 192:3163–3177

    Article  MATH  Google Scholar 

  5. Weide-Zaage K, Dalleaua D, Yu X (2003) Static and dynamic analysis of failure locations and void formation in interconnects due to various migration mechanisms. Mater Sci Semicond Process 6:85–92

    Article  Google Scholar 

  6. Shen Y-L, Guo YL, Minor CA (2000) Voiding induced stress redistribution and its reliability implications in metal interconnects. Acta Mater 48:1667–1678

    Article  Google Scholar 

  7. Nguyen HV, Salm C, Wenzel R, Mouthaan AJ, Kuper FG (2002) Simulation and experimental characterization of reservoir and via layout effects on electromigration lifetime. Microelectron Reliab 42:1421–1425

    Article  Google Scholar 

  8. Zhang YW, Bower AF, Xia L, Shih CF (1999) Three dimensional finite element analysis of the evolution of voids and thin films by strain and electromigration induced surface diffusion. J Mech Phys Solids 47:173–199

    Article  MATH  Google Scholar 

  9. Kuroda S, Kawai Y, Onoda H, Nishi K (1991) Viscoelasticity-based time-dependent stress model for a submicron aluminum interconnect. IEDM, pp 713–716

    Google Scholar 

  10. Wallace B, Lee Y-H, Pantuso D, Wu K, Mielke N (1999) Thermo-mechanical stress-induced voiding in a tungsten-AlCu interconnect system. In: 37th annual international reliability physics symposium, pp 303–309

    Google Scholar 

  11. Im S, Banejee K, Goodson KE (2002) Modeling and analysis of via hot spots and implications for ULSI interconnect reliability. In: 40th annual international reliability physics symposium, pp 336–345

    Google Scholar 

  12. Huang TC, Yao CH, Wan WK, Hsia CC, Liang MS (2003) Numerical modeling and characterization of the stress migration behavior upon various 90 nanometer Cu/low-k interconnects. In: Proceedings of the IEEE international interconnect technology conference, pp 207–209

    Google Scholar 

  13. Chen F, Chanda K, Gill I, Angyal M, Demarest J, Sullivan T, Kontra R, Shinosky M, Li J, Economikos L, Hoinkis M, Lane S, McHerron D, Inohara M, Boettcher S, Dunn D, Fukasawa M, Zhang BC, Ida K, Ema T, Lembach G, Kumar K, Lin Y, Maynard H, Urata K, Bolom T, Inoue K, Smith J, Ishikawa Y, Naujok M, Ong P, Sakamoto A, Hunt D, Aitken J (2005) Investigation of CVD SiCOH low-k time-dependent dielectric breakdown at 65 nm node technology. In: Proceedings of the international reliability physics symposium, pp 501–507

    Google Scholar 

  14. Tsu R, McPherson JW, McKee WR (2000) Leakage and breakdown reliability issues associated with low-k dielectrics in a dual-damascene Cu process. In: IEEE 38th annual international reliability physics symposium, San Jose, California, pp 348–353

    Google Scholar 

  15. Zienkiewicz OC (1977) The finite element method, 3rd edn. McGraw-Hill, New York

    MATH  Google Scholar 

  16. Becker EB, Carey GF, Oden JT (1981) Finite elements: an introduction, vol I. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  17. Moaveni S (1999) Finite element analysis: theory and application with ANSYS. Prentice Hall, Englewood Cliffs

    Google Scholar 

  18. Swanson Analysis System, Inc (1999) ANSYS theory reference, 5.6 edn. Swanson Analysis System, Inc., Houston

    Google Scholar 

  19. White FM (1988) Heat and mass transfer. Addison-Wesley, New York

    Google Scholar 

  20. Rohsenow WM, Hartnett JP, Ganic EJ (1985) Handbook of heat transfer fundamentals. McGraw-Hill, New York

    Google Scholar 

  21. Timoshenko SP, Goodier JN (1970), Theory of elasticity, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  22. Dieter GE (1988) Mechanical metallurgy. McGraw-Hill, London

    Google Scholar 

  23. ANSYS, Inc (2009) ANSYS parametric design language guide, 12th edn. ANSYS, Inc., Canonsburg

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cher Ming Tan .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Tan, C.M., Gan, Z., Li, W., Hou, Y. (2011). Introduction and General Theory of Finite Element Method. In: Applications of Finite Element Methods for Reliability Studies on ULSI Interconnections. Springer Series in Reliability Engineering. Springer, London. https://doi.org/10.1007/978-0-85729-310-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-310-7_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-309-1

  • Online ISBN: 978-0-85729-310-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics