Skip to main content

Development of Physics-Based Modeling for ULSI Interconnections Failure Mechanisms: Electromigration and Stress-Induced Voiding

  • Chapter
  • First Online:
Applications of Finite Element Methods for Reliability Studies on ULSI Interconnections

Part of the book series: Springer Series in Reliability Engineering ((RELIABILITY))

  • 1241 Accesses

Abstract

In this chapter, we present a comprehensive review on the physics-based modeling of EM phenomena in ULSI interconnections over the last three decades. In the evolution of the physics-based modeling, some aspects of the physics are dropped for simplification, and some are added to accommodate new understanding on the EM physics as well as for the new development of the interconnect technology. With the continuous change in the metallization system and materials, the aspects of physics that have been dropped may become important again, and new physics might also occur with these changes in metallization system. Here, we re-examine the justification of dropping or adding various physical aspects in the EM modeling during their evolution and their implications on the future interconnect system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clement JJ (2001) Electromigration modeling for integrated circuit interconnect reliability analysis. IEEE Trans Device Mater Reliab 1:33–42

    Article  Google Scholar 

  2. Rosenberg R, Ohring M (1971) Void formation and growth during electromigration in thin films. J Appl Phys 42:5671

    Article  Google Scholar 

  3. Blech IA (1976) Electromigration in thin aluminum films on titanium nitride. J Appl Phys 47:1203–1208

    Article  Google Scholar 

  4. Blech IA, Herring C (1976) Stress generation by electromigration. Appl Phys Lett 29:131–133

    Article  Google Scholar 

  5. Shatzkes M, Lloyd JR (1986) A model for conductor failure considering diffusion concurrently with electromigration resulting in a current exponent of 2. J Appl Phys 59:3890

    Article  Google Scholar 

  6. Kirchheim R, Kaeber U (1991) Atomistic and computer modeling of metallization failure of integrated circuit by electromigration. J Appl Phys 70:172

    Article  Google Scholar 

  7. Clement JJ, Lloyd JR (1991) Numerical investigations of the electromigration boundary value problem. J Appl Phys 71:1729

    Article  Google Scholar 

  8. Tu KN (1992) Electromigration in stressed thin films. Phys Rev B 45:1409

    Article  Google Scholar 

  9. Ross CA (1991) Stress and electromigration in thin film metallization. Mater Res Soc Proc 225:35–46

    Google Scholar 

  10. Kirchheim R (1992) Stress and electromigration in Al-lines of the integrated circuits. Acta Metall Mater 40:309

    Article  Google Scholar 

  11. Korhonen MA, Borgesen P, Tu KN, Li C-Y (1993) Stress evolution due to electromigration in confined metal lines. J Appl Phys 73:3790

    Article  Google Scholar 

  12. Clement JJ, Thompson CV (1995) Modeling electromigration-induced stress evolution in confined metal lines. J Appl Phys 78:900

    Article  Google Scholar 

  13. Park YJ, Andleigh VK, Thompson CV (1999) Simulations of stress evolution and the current density scaling of electromigration-induced failure times in pure and alloyed interconnects. J Appl Phys 85:3546

    Article  Google Scholar 

  14. Park YJ, Thompson CV (1997) The effects of the stress dependence of atomic diffusivity on stress evolution due to electromigration. J Appl Phys 82:4277

    Article  Google Scholar 

  15. Andleigh YK, Fayad W, Verminski M, Thompson CV (eds) http://nirvana.mit.edu/emsim/

  16. Hau-Riege CS, Thompson CV (2000) The effects of microstructural transitions at width transitions on interconnect reliability. J Appl Phys 87:8467

    Article  Google Scholar 

  17. Hau-Riege SP, Thompson CV (2000) Electromigration saturation in a simple interconnect tree. J Appl Phys 88:2382

    Article  Google Scholar 

  18. Hau-Riege SP (2002) Probabilistic immortality of Cu damascene interconnects. J Appl Phys 91:2014

    Article  Google Scholar 

  19. Tan CM (2010) Electromigration in ULSI interconnection. World Scientific Publishing Co, Singapore

    Google Scholar 

  20. Gleixner RJ, Nix WD (1999) A physically based model of electromigration and stress-induced void formation in microelectronic interconnects. J Appl Phys 86:1932

    Article  Google Scholar 

  21. Sukharev V, Zschech E (2004) A model for electromigration-induced degradation mechanisms in dual-inlaid copper interconnects: effect of interface bonding strength. J Appl Phys 96:6337

    Article  Google Scholar 

  22. Zschech E, Sukharev V (2005) Microstructure effect on EM-induced copper interconnect degradation: experiment and simulation. Microelectron Eng 82:629

    Article  Google Scholar 

  23. Zschech E, Meyer MA, Mhaisalkar SG, Vairagar AV, Krishnamoorthy A, Engelmann HJ, Sukharev V (2006) Effect of interface modification on EM-induced degradation mechanisms in copper interconnects. Thin Solid Film 504:279

    Article  Google Scholar 

  24. Arzt E, Kraft O, Nix WD, Sanchez JJE (1994) Electromigration failure by shape change of voids in bamboo lines. J Appl Phys 76:1563

    Article  Google Scholar 

  25. Kraft O, Arzt E (1997) Electromigration mechanisms in conductor lines: void shape changes and slit-like failure. Acta Mater 45:1599

    Article  Google Scholar 

  26. Wang W, Suo Z, Hao TH (1996) A simulation of electromigration‐induced transgranular slits. J Appl Phys 79:2394

    Article  Google Scholar 

  27. Suo Z, Wang W, Yang M (1994) Electromigration instability: transgranular slits in interconnects. Appl Phys Lett 64:1944

    Article  Google Scholar 

  28. Yang W, Wang W, Suo Z (1994) Cavity and dislocation instability due to electric current. J Mech Phys Solids 42:897

    Article  Google Scholar 

  29. Itô KE (1980) Methods other than difference methods. In: Iyanaga S, Kuwada Y (eds) Encyclopedic dictionary of mathematics, vol 2. MIT Press, Cambridge

    Google Scholar 

  30. Atkinson RR (2003) PhD, Rutgers, Multiphysics of degradation and failure of line interconnects. The State University of New Jersey, New Brunswick

    Google Scholar 

  31. Gungor MR, Maroudas D (1998) Electromigration-induced failure of metallic thin films due to transgranular void propagation. Appl Phys Lett 72:3452

    Article  Google Scholar 

  32. Gungor MR, Maroudas D (1999) Theoretical analysis of electromigration-induced failure of metallic thin films due to transgranular void propagation. J Appl Phys 85:2233

    Article  Google Scholar 

  33. Schimschak M, Krug J (2000) Electromigration-driven shape evolution of two-dimensional voids. J Appl Phys 87:695

    Article  Google Scholar 

  34. Karma A, Rappel W (1996) Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics. Phys Rev E 53:R3017

    Article  Google Scholar 

  35. Mahadevan M, Bradley RM (1999) Simulations and theory of electromigration-induced slit formation in unpassivated single-crystal metal lines. Phys Rev B 59:11037

    Article  Google Scholar 

  36. Mahadevan M, Bradley RM (1999) Simulations and theory of electromigration-induced slit formation in unpassivated single-crystal-metal lines. Phys Rev B 59:11037

    Article  Google Scholar 

  37. Fix G (1983) Free boundary problems. In: Fasano A, Primicero M (eds) Research notes in mathematics, vol 2. Pitman, New York

    Google Scholar 

  38. Collins JB, Levine H (1985) Diffuse interface model of diffusion-limited crystal growth. Phys Rev B 31:6119

    Article  Google Scholar 

  39. Bhate DN, Kumar A, Bower AF (2000) Diffuse interface model for electromigration and stress voiding. J Appl Phys 87:1712

    Article  Google Scholar 

  40. Gurtin M (1996) Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance. Physica D 92:178

    Article  MathSciNet  MATH  Google Scholar 

  41. Sauter Mack A, Flinn P (1995) Effect of intrinsic passivation stress on stress in encapsulated interconnect lines. In: Materials Research Society Symposium, Boston, MA, USA, pp 465–470

    Google Scholar 

  42. Yeo I-S, Ho PS (1996) Stress relaxation and microstructural change in passivated Al(Cu) lines. In: 34th Annual proceedings of reliability physics symposium, Dallas, pp 131–138

    Google Scholar 

  43. Young-Chang J, Jong-Min P, Il-Mok P (2006) Effect of grain growth stress and stress gradient on stress-induced voiding in damascene Cu/low-k interconnects for ULSI. Thin Solid Films 504:284–287

    Article  Google Scholar 

  44. Li C-Y, Borgesen P, Sullivan TD (1991) Stress-migration related electromigration damage mechanism in passivated, narrow interconnects. Appl Phys Lett 59:1464

    Article  Google Scholar 

  45. Ogawa ET, Mcpherson JW, Rosal JA (2002) Stress-induced voiding under vias connected to wide Cu metal leads. In: Proceedings of 40th Annual IEEE international reliability physics symposium (IRPS), pp 312–321

    Google Scholar 

  46. Wang TC, Hsieh TE, Wang M-T, Su D-S, Chang C-H, Wang YL, Lee JY-M (2005) Stress migration and electromigration improvement for copper dual damascene interconnection. J Electrochem Soc 152:45–49

    Article  Google Scholar 

  47. Hommel M, Fischer AH, Glasow AV, Zitzelsberger AE (2002) Stress-induced voiding in aluminum and copper interconnects. In: Stress-induced phenomena in metallization: Sixth international workshop on stress-induced phenomena in metallization, pp 157–168

    Google Scholar 

  48. An JH, Ferreira PJ (2006) In situ transmission electron microscopy observations of 1.8 μm and 180 nm Cu interconnects under thermal stresses. Appl Phys Lett 89:151919

    Article  Google Scholar 

  49. Fayolle M, Passemard G, Assous M, Louis D, Beverina A, Gobil Y, Cluzel J, Arnaud L (2002) Integration of copper with an organic low-k dielectric in 0.12 μm node interconnect. Microelectron Eng 60(1–2):119–124

    Article  Google Scholar 

  50. Laconte J, Iker F, Jorez S, Andre N, Proost J, Pardoen T, Flandre D, Raskin JP (2004) Thin films stress extraction using micromachined structures and wafer curvature measurements. Microelectron Eng 76(1–2):219–226

    Article  Google Scholar 

  51. Rivero C, Gergaud P, Gailhanou M, Thomas O, Froment B, Jaouen H, Carron V (2005) Combined synchrotron x-ray diffraction and wafer curvature measurements during Ni-Si reactive film formation. Appl Phys Lett 87:1–3

    Article  Google Scholar 

  52. Budiman AS, Nix WD, Tamura N, Valek BC, Gadre K, Maiz J, Spolenak R, Patel JR (2006) Crystal plasticity in Cu damascene interconnect lines undergoing electromigration as revealed by synchrotron x-ray microdiffraction. Appl Phys Lett 88:233515

    Article  Google Scholar 

  53. Rhee SH, Du Y, Ho PS (2003) Thermal stress characteristics of Cu/oxide and Cu/low-k submicron interconnect structures. J Appl Phys 93:3926–3933

    Article  Google Scholar 

  54. Igic PM, Mawby PA (1999) An advanced finite element strategy for thermal stress field investigation in aluminium interconnections during processing of very large scale integration multilevel structures. Microelectron J 30:1207–1212

    Article  Google Scholar 

  55. Shen Y-L (2006) Thermo-mechanical stresses in copper interconnects: a modeling analysis. Microelectron Eng 83:446–459

    Article  Google Scholar 

  56. Paik J-M, Park H, Joo Y-C (2004) Effect of low-k dielectric on stress and stress-induced damage in Cu interconnects. Microelectron Eng 71:348–357

    Article  Google Scholar 

  57. Flinn PA (1995) Mechanical stress in VLSI interconnections: origins, effects, measurement, and modeling. Mater Res Bull 20:70–73

    Google Scholar 

  58. Shi LT, Tu KN (1994) Finite-element modeling of stress distribution and migration in interconnecting studs of a three-dimensional multilevel device structure. Appl Phys Lett 65:1516

    Article  Google Scholar 

  59. Ho PS, Yeo IS, Liao CN, Anderson SGH, Kawasaki H (1995) Thermal stress and relaxation behaviour of Al(Cu) submicroninterconnects. In: 4th International conference on solid-state and integrated circuit technology, Beijing, China, pp 408–412

    Google Scholar 

  60. Niwa H, Yagi H, Tsuchikawa H, Masaharu K (1990) Stress distribution in an aluminum interconnect of very large scale integration. J Appl Phys 68:328–333

    Article  Google Scholar 

  61. Valek BC, Bravman JC, Tamura N, MacDowell AA, Celestre RS, Padmore HA, Spolenak R, Brown WL, Batterman BW, Patel JR (2002) Electromigration-induced plastic deformation in passivated metal lines. Appl Phys Lett 81:4168

    Article  Google Scholar 

  62. Hou Y, Tan CM (2007) Blech effect in Cu interconencts with oxide and low-k dielectrics. In: 14th International symposium on the physics and failure analysis of integrated circuits, IEEE, Bangalore, India, p 65

    Google Scholar 

  63. Paik J-M, Park H, Joo Y-C, Park K-C (2005) Effect of dielectric materials on stress-induced damage modes in damascene Cu lines. J Appl Phys 97:104513

    Article  Google Scholar 

  64. Korhonen MA, Black RD, Li C-Y (1991) Stress relaxation of passivated aluminum line metallizations on silicon substrates. J Appl Phys 69:1748–1755

    Article  Google Scholar 

  65. Wikstrom A, Gudmundson P, Suresh S (1999) Analysis of average thermal stresses in passivated metal interconnects. J Appl Phys 86:6088–6095

    Article  Google Scholar 

  66. Chang CW, Thompson CV, Gan CL, Pey KL, Choi WK, Lim YK (2007) Effects of microvoids on the linewidth dependence of electromigration failure of dual-damascene copper interconnects. Appl Phys Lett 90:193505

    Article  Google Scholar 

  67. Shen Y-L, Guo YL, Minor CA (2000) Voiding induced stress redistribution and its reliability implications in metal interconnects. Acta Mater 48:1667–1678

    Article  Google Scholar 

  68. Thouless MD, Rodbell KP, Cabral C (1996) Effect of a surface layer on the stress relaxation of thin films. J Vacuum Sci Technol A 14:2454

    Article  Google Scholar 

  69. Keller R-M, Baker SP, Arzt E (1998) Quantitative analysis of strengthening mechanisms in thin Cu films: effects of film thickness, grain size and passivation. J Mater Res 13:1307–1317

    Article  Google Scholar 

  70. Suo Z (2003) Reliability of interconnect structures. In: Gerberich W, Yang W (eds) Comprehensive structural integrity, vol 8. Elsevier, Amsterdam, pp 265–324

    Google Scholar 

  71. Hou Y, Tan CM (2008) Stress-induced voiding study in integrated circuit interconnects. Semicond Sci Technol 23:075023–075031

    Article  Google Scholar 

  72. Korhonen MA, Black RD, Li C-Y (1993) Stress evolution due to electromigration in confined metal lines. J Appl Phys 73:3790–3799

    Article  Google Scholar 

  73. Zhai CJ, Blish RC (2005) A physically based lifetime model for stress-induced voiding in interconnects. J Appl Phys 97:113503

    Article  Google Scholar 

  74. Fischer AH, Zitzelsberger AE (2001) The quantitative assessment of stress-induced voiding in process qualification. In: Proceedings of 39th IEEE/IRPS conference, Orlando, Florida, IEEE, New York, pp 334–340

    Google Scholar 

  75. Tan CM, Hou Y (2007) Lifetime modeling for stress-induced voiding in integrated circuit interconnections. Appl Phys Lett 91:061904

    Article  Google Scholar 

  76. Ogawa ET, McPherson JW, Rosal JA, Dickerson KJ, Chiu T-C, Tsung LY, Jain MK, Bonifield TD, Ondrusek JC, Mckee WR (2002) Stress-induced voiding under vias connected to wide Cu metal leads. In: Proceedings of 40th IEEE/IRPS conference, Dallas, Texas, IEEE, New York, pp 312–331

    Google Scholar 

  77. Aoyagi M, Asada K (1999) Vacancy distribution in aluminum interconnections on semiconductor devices. Jpn J Appl Phys 38:1909–1914 Part 1 (Regular Papers, Short Notes & Review Papers)

    Article  Google Scholar 

  78. Aoyagi M (2003) Modeling of vacancy flux due to stress-induced migration. J Vacuum Sci Technol B Microelectron Nanometer Struct 21:1314–1317

    Article  Google Scholar 

  79. Aoyagi M (2006) Change in electrical resistance caused by stress-induced migration. J Vacuum Sci Technol B Microelectron Nanometer Struct 24:250–254

    Article  Google Scholar 

  80. Reimbold G, Sicardy O, Arnaud L, Fillot F, Torres J (2002) Mechanical stress measurements in damascene copper interconnects and influence on electromigration parameters. IEDM Tech Digest 745–748

    Google Scholar 

  81. Bruynseraede C, Tokei Z, Iacopi F, Beyer GP, Michelon J, Maex K (2005) The impact of scaling on electromigration reliability. In: Proceedings of 43rd IEEE/IRPS conference, pp 7–17

    Google Scholar 

  82. Suo Z (2003) Interfacial and Nanoscale Failure. In: Gerberich W, Yang W (eds) Reliability of interconnect structures. Comprehensive Structural Integrity (Milne I, Ritchie RO, Karihaloo B, Editors-in-Chief), 8:265–324

    Google Scholar 

  83. Gan ZH, Shao W, Mhaisalkar SG, Chen Z, Gusak A (2006) Experimental and numerical studies of stress migration in Cu interconnects embedded in different dielectrics. In: Stress-induced phenomena in metallization. Eighth international workshop on stress-induced phenomena in metallization, AIP, vol 817, pp 269–274

    Google Scholar 

  84. Hau-Riege CS, Hau-Riege SP, Marathe AP (2004) The effect of interlevel dielectric on the critical tensile stress to void nucleation for the reliability of Cu interconnects. J Appl Phys 96:5792–5796

    Article  Google Scholar 

  85. Tan CM, Hou Y, Li W (2007) Revisit to the finite element modeling of electromigration for narrow interconnects. J Appl Phys 102:033705

    Article  Google Scholar 

  86. Sharma P, Ganti S, Ardebili H, Alizadeh A (2004) On the scaling of thermal stresses in passivated nanointerconnects. J Appl Phys 95:2763–2769

    Article  Google Scholar 

  87. Chiras S, Charke DR (2000) Dielectric cracking produced by electromigration in microelectronic interconnects. J Appl Phys 88:6302–6312

    Article  Google Scholar 

  88. Atrash F, Sherman D (2006) Analysis of the residual stresses, the biaxial modulus, and the interfacial fracture energy of low-k dielectric thin films. J Appl Phys 100:103510–103517

    Article  Google Scholar 

  89. Du Y, Wang G, Merrill C, Ho PS (2002) Thermal stress and debonding in Cu/low-k damascene line structures. In: 52nd Electronic components and technology conference, pp 859–864

    Google Scholar 

  90. Shen Y-L, Ramamurty U (2003) Temperature-dependent inelastic response of passivated copper films: experiments, analyses, and implications. J Vacuum Sci Technol B 21:1258–1264

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cher Ming Tan .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Tan, C.M., Gan, Z., Li, W., Hou, Y. (2011). Development of Physics-Based Modeling for ULSI Interconnections Failure Mechanisms: Electromigration and Stress-Induced Voiding. In: Applications of Finite Element Methods for Reliability Studies on ULSI Interconnections. Springer Series in Reliability Engineering. Springer, London. https://doi.org/10.1007/978-0-85729-310-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-310-7_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-309-1

  • Online ISBN: 978-0-85729-310-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics