Reasoning with Uncertainty

Part of the Undergraduate Topics in Computer Science book series (UTICS)


Reasoning under uncertainty with limited resources and incomplete knowledge plays a big role in everyday situations and also in many technical applications of AI. Probabilistic reasoning is the modern AI method for solving these problems. After a brief introduction to probability theory we present the powerful method of maximum entropy and Bayesian networks which are used in many applications. The medical diagnosis expert system LEXMED, developed by the author, is used to demonstrate the power of these formalisms.


Conditional Probability Expert System Bayesian Network Parent Node Conditional Independence 


  1. [Ada75]
    E. W. Adams. The Logic of Conditionals. Synthese Library, volume 86. Reidel, Dordrecht, 1975. MATHGoogle Scholar
  2. [Che83]
    P. Cheeseman. A method for computing generalised bayesian probability values for expert systems. In Proc. of the 8th Intl. Joint Conf. on Artificial Intelligence (IJCAI-83), 1983. Google Scholar
  3. [Che85]
    P. Cheeseman. In defense of probability. In Proc. of the 9th Intl. Joint Conf. on Artificial Intelligence (IJCAI-85), 1985. Google Scholar
  4. [Coz98]
    F. G. Cozman. Javabayes, bayesian networks in java, 1998.
  5. [dD91]
    F. T. de Dombal. Diagnosis of Acute Abdominal Pain. Churchill Livingstone, London, 1991. Google Scholar
  6. [dDLS+72]
    F. T. de Dombal, D. J. Leaper, J. R. Staniland, A. P. McCann, and J. C. Horrocks. Computer aided diagnosis of acute abdominal pain. Br. Med. J., 2:9–13, 1972. CrossRefGoogle Scholar
  7. [DHS01]
    R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Wiley, New York, 2001. MATHGoogle Scholar
  8. [Elk93]
    C. Elkan. The paradoxical success of fuzzy logic. In Proceedings of the Eleventh National Conference on Artificial Intelligence (AAAI-93), pages 698–703. MIT Press, Cambridge, 1993. Google Scholar
  9. [Ert11]
    W. Ertel. Artificial Intelligence, 2011. Homepage to this book with materials, demo programs, links, literature, errata, etc.
  10. [ES99]
    W. Ertel and M. Schramm. Combining data and knowledge by MaxEnt-optimization of probability distributions. In PKDD’99 (3rd European Conference on Principles and Practice of Knowledge Discovery in Databases). LNCS, volume 1704, pages 323–328. Springer, Prague, 1999. CrossRefGoogle Scholar
  11. [FPP07]
    D. Freedman, R. Pisani, and R. Purves. Statistics. Norton, New York, 4th edition, 2007. Google Scholar
  12. [Hon94]
    B. Hontschik. Theorie und Praxis der Appendektomie. Mabuse, Frankfurt am Main, 1994. Google Scholar
  13. [Jay57]
    E. T. Jaynes. Information theory and statistical mechanics. Phys. Rev., 1957. Google Scholar
  14. [Jay03]
    E. T. Jaynes. Probability Theory: The Logic of Science. Cambridge University Press, Cambridge, 2003. CrossRefMATHGoogle Scholar
  15. [Jen01]
    F. V. Jensen. Bayesian Networks and Decision Graphs. Springer, Berlin, 2001. MATHGoogle Scholar
  16. [Kan89]
    Th. Kane. Maximum entropy in Nilsson’s probabilistic logic. In Proc. of the 11th Intl. Joint Conf. on Artificial Intelligence (IJCAI-89), 1989. Google Scholar
  17. [KK92]
    J. N. Kapur and H. K. Kesavan. Entropy Optimization Principles with Applications. Academic Press, San Diego, 1992. Google Scholar
  18. [Le999]
    Lexmed—a learning expert system for medical diagnosis, 1999.
  19. [Nil86]
    N. J. Nilsson. Probabilistic logic. Artif. Intell., 28(1):71–87, 1986. CrossRefMATHMathSciNetGoogle Scholar
  20. [OFY+95]
    C. Ohmann, C. Franke, Q. Yang, M. Margulies, M. Chan, van P. J. Elk, F. T. de Dombal, and H. D. Röher. Diagnosescore für akute Appendizitis. Chirurg, 66:135–141, 1995. Google Scholar
  21. [OMYL96]
    C. Ohmann, V. Moustakis, Q. Yang, and K. Lang. Evaluation of automatic knowledge acquisition techniques in the diagnosis of acute abdominal pain. Artif. Intell. Med., 8:23–36, 1996. CrossRefGoogle Scholar
  22. [OPB94]
    C. Ohmann, C. Platen, and G. Belenky. Computerunterstütze Diagnose bei akuten Bauchschmerzen. Chirurg, 63:113–123, 1994. Google Scholar
  23. [Pea88]
    J. Pearl. Probabilistic Reasoning in Intelligent Systems. Networks of Plausible Inference. Morgan Kaufmann, San Mateo, 1988. Google Scholar
  24. [RM96]
    W. Rödder and C.-H. Meyer. Coherent knowledge processing at maximum entropy by SPIRIT. In KI-96 (German National Conference on AI), Dresden, 1996. Google Scholar
  25. [RN10]
    S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, New York, 3rd edition, 2010. 1st edition: 1995. Google Scholar
  26. [Ros09]
    S. M. Ross. Introduction to Probability and Statistics for Engineers and Scientists. Academic Press, San Diego, 2009. MATHGoogle Scholar
  27. [Sch96]
    M. Schramm. Indifferenz, Unabhängigkeit und maximale Entropie: Eine wahrscheinlichkeitstheoretische Semantik für Nicht-Monotones Schließen. Dissertationen zur Informatik, Band 4. CS, Munich, 1996. MATHGoogle Scholar
  28. [SE00]
    M. Schramm and W. Ertel. Reasoning with probabilities and maximum entropy: the system PIT and its application in LEXMED. In K. Inderfurth et al., editor, Operations Research Proceedings (SOR’99), pages 274–280. Springer, Berlin, 2000. Google Scholar
  29. [Sho76]
    E. H. Shortliffe. Computer-Based Medical Consultations, MYCIN. North-Holland, New York, 1976. Google Scholar
  30. [Ste07]
    J. Stewart. Multivariable Calculus. Brooks Cole, Florence, 2007. Google Scholar
  31. [SW76]
    C. E. Shannon and W. Weaver. Mathematische Grundlagen der Informationstheorie. Oldenbourg, Munich, 1976. MATHGoogle Scholar
  32. [Whi96]
    J. Whittaker. Graphical Models in Applied Multivariate Statistics. Wiley, New York, 1996. Google Scholar
  33. [ZSR+99]
    A. Zielke, H. Sitter, T. A. Rampp, E. Schäfer, C. Hasse, W. Lorenz, and M. Rothmund. Überprüfung eines diagnostischen Scoresystems (Ohmann-Score) für die akute Appendizitis. Chirurg, 70:777–783, 1999. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.FB Elektrotechnik und InformatikHochschule Ravensburg-Weingarten, University of Applied SciencesWeingartenGermany

Personalised recommendations