The term artificial intelligence (AI) stirs emotions. For one thing there is our fascination with intelligence, which seemingly imparts to us humans a special place among life forms. Questions arise such as “What is intelligence?”, “How can one measure intelligence?” or “How does the brain work?”. All these questions are meaningful when trying to understand artificial intelligence. However, the central question for the engineer, especially for the computer scientist, is the question of the intelligent machine that behaves like a person, showing intelligent behavior. Beside discussing these issues, this introductory chapter gives a brief sketch of the history of AI.


Artificial Intelligence Predicate Logic Automatic Theorem Prover Intelligent Behavior Artificial Intelligence System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [Bra84]
    V. Braitenberg. Vehicles—Experiments in Synthetic Psychology. MIT Press, Cambridge, 1984. Google Scholar
  2. [Bri91]
    Encyclopedia Britannica. Encyclopedia Britannica, London, 1991. Google Scholar
  3. [Che85]
    P. Cheeseman. In defense of probability. In Proc. of the 9th Intl. Joint Conf. on Artificial Intelligence (IJCAI-85), 1985. Google Scholar
  4. [dDLS+72]
    F. T. de Dombal, D. J. Leaper, J. R. Staniland, A. P. McCann, and J. C. Horrocks. Computer aided diagnosis of acute abdominal pain. Br. Med. J., 2:9–13, 1972. CrossRefGoogle Scholar
  5. [Dee11]
  6. [FNA+09]
    D. Ferrucci, E. Nyberg, J. Allan, K. Barker, E. Brown, J. Chu-Carroll, A. Ciccolo, P. Duboue, J. Fan, D. Gondek et al. Towards the open advancement of question answer systems. IBM Technical Report RC24789, Yorktown Heights, NY, 2009. http://www.research.ibm.com/deepqa/question_answering.shtml.
  7. [Göd31a]
    K. Gödel. Diskussion zur Grundlegung der Mathematik, Erkenntnis 2. Monatshefte Math. Phys., 32(1):147–148, 1931. Google Scholar
  8. [Göd31b]
    K. Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte Math. Phys., 38(1):173–198, 1931. CrossRefGoogle Scholar
  9. [McD82]
    J. McDermott. R1: a rule-based configurer of computer systems. Artif. Intell., 19:39–88, 1982. CrossRefGoogle Scholar
  10. [MP69]
    M. Minsky and S. Papert. Perceptrons. MIT Press, Cambridge, 1969. MATHGoogle Scholar
  11. [NS61]
    A. Newell and H. A. Simon. Gps, a program that simulates human thought. In H. Billing, editor, Lernende Automaten, pages 109–124. Oldenbourg, Munich, 1961. Google Scholar
  12. [NSS83]
    A. Newell, J. C. Shaw, and H. A. Simon. Empirical explorations with the logic theory machine: a case study in heuristics. In J. Siekmann and G. Wrightson, editors, Automation of Reasoning 1: Classical Papers on Computational Logic 1957–1966, pages 49–73. Springer, Berlin, 1983. Erstpublikation: 1957. Google Scholar
  13. [Pea88]
    J. Pearl. Probabilistic Reasoning in Intelligent Systems. Networks of Plausible Inference. Morgan Kaufmann, San Mateo, 1988. Google Scholar
  14. [Ric83]
    E. Rich. Artificial Intelligence. McGraw–Hill, New York, 1983. Google Scholar
  15. [RM86]
    D. Rumelhart and J. McClelland. Parallel Distributed Processing, volume 1. MIT Press, Cambridge, 1986. Google Scholar
  16. [RN10]
    S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, New York, 3rd edition, 2010. 1st edition: 1995. http://aima.cs.berkeley.edu. Google Scholar
  17. [Roba]
    Robocup official site. www.robocup.org.
  18. [Rob65]
    J. A. Robinson. A machine-oriented logic based on the resolution principle. J. ACM, 12(1):23–41, 1965. CrossRefMATHGoogle Scholar
  19. [Sam59]
    A. L. Samuel. Some studies in machine learning using the game of checkers. IBM J., 1(3):210–229, 1959. CrossRefGoogle Scholar
  20. [SE90]
    Ch. Suttner and W. Ertel. Automatic acquisition of search guiding heuristics. In 10th Int. Conf. on Automated Deduction. LNAI, volume 449, pages 470–484. Springer, Berlin, 1990. Google Scholar
  21. [Spe97]
    Mysteries of the Mind. Special Issue. Scientific American Inc., 1997. Google Scholar
  22. [Spe98]
    Exploring Intelligence. Scientific American Presents, volume 9. Scientific American Inc., 1998. Google Scholar
  23. [SR86]
    T. J. Sejnowski and C. R. Rosenberg. NETtalk: a parallel network that learns to read aloud. Technical Report JHU/EECS-86/01. The John Hopkins University Electrical Engineering and Computer Science Technical Report, 1986. Reprint in [AR88], pages 661–672. Google Scholar
  24. [Tur37]
    A. M. Turing. On computable numbers, with an application to the Entscheidungsproblem. Proc. Lond. Math. Soc., 42(2), 1937. Google Scholar
  25. [Tur50]
    A. M. Turing. Computing machinery and intelligence. Mind, 59:433–460, 1950. CrossRefMathSciNetGoogle Scholar
  26. [Wei66]
    J. Weizenbaum. ELIZA–a computer program for the study of natural language communication between man and machine. Commun. ACM, 9(1):36–45, 1966. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.FB Elektrotechnik und InformatikHochschule Ravensburg-Weingarten, University of Applied SciencesWeingartenGermany

Personalised recommendations