How to Test Osteoporosis Treatments in Experimental Animals

  • Robert J. van ‘t Hof


Osteoporosis is characterized by an imbalance between bone formation and bone resorption, leading to a decrease in bone volume, and increased fracture risk. The ultimate goal of treatment for osteoporosis is the prevention of fractures.


Bone Mineral Density Bone Loss Bone Turnover Trabecular Bone Bone Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1.  1.
    Rodan GA, Martin TJ. Therapeutic approaches to bone diseases. Science. 2000;289(5484):1508-1514.PubMedCrossRefGoogle Scholar
  2.  2.
    Turner RT, Bell NH. The effects of immobilization on bone histomorphometry in rats. J Bone Miner Res. 1986;1(5):399-407.PubMedCrossRefGoogle Scholar
  3.  3.
    Minne HW, Pfeilschifter J, Scharla S, et al. Inflammation-mediated osteopenia in the rat: a new animal model for ­pathological loss of bone mass. Endocrinology. 1984; 115(1):50-54.PubMedCrossRefGoogle Scholar
  4.  4.
    McLaughlin F, Mackintosh J, Hayes BP, et al. Glucocorticoid-induced osteopenia in the mouse as assessed by histomorphometry, microcomputed tomography, and biochemical markers. Bone. 2002;30(6):924-930.PubMedCrossRefGoogle Scholar
  5.  5.
    Wronski TJ, Lowry PL, Walsh CC, Ignaszewski LA. Skeletal alterations in ovariectomized rats. Calcif Tissue Int. 1985; 37(3):324-328.PubMedCrossRefGoogle Scholar
  6.  6.
    Miller LC, Weaver DS, McAlister JA, Koritnik DR. Effects of ovariectomy on vertebral trabecular bone in the cynomolgus monkey (Macaca fascicularis). Calcif Tissue Int. 1986; 38(1):62-65.PubMedCrossRefGoogle Scholar
  7.  7.
    Lees CJ, Register TC, Turner CH, Wang T, Stancill M, Jerome CP. Effects of raloxifene on bone density, biomarkers, and histomorphometric and biomechanical measures in ovariectomized cynomolgus monkeys. Menopause. 2002; 9(5):320-328.PubMedCrossRefGoogle Scholar
  8.  8.
    Iwaniec UT, Yuan D, Power RA, Wronski TJ. Strain-dependent variations in the response of cancellous bone to ovariectomy in mice. J Bone Miner Res. 2006;21(7):1068-1074.PubMedCrossRefGoogle Scholar
  9.  9.
    Kolta S, De Vernejoul MC, Meneton P, Fechtenbaum J, Roux C. Bone mineral measurements in mice: comparison of two devices. J Clin Densitom. 2003;6(3):251-258.PubMedCrossRefGoogle Scholar
  10. 10.
    Yao GQ, Wu JJ, Ovadia S, Troiano N, Sun BH, Insogna K. Targeted overexpression of the two colony-stimulating factor-1 isoforms in osteoblasts differentially affects bone loss in ovariectomized mice. Am J Physiol Endocrinol Metab. 2009;296(4):E714-E720.PubMedCrossRefGoogle Scholar
  11. 11.
    Modder UI, Riggs BL, Spelsberg TC, et al. Dose-response of estrogen on bone versus the uterus in ovariectomized mice. Eur J Endocrinol. 2004;151(4):503-510.PubMedCrossRefGoogle Scholar
  12. 12.
    Binkley N, Dahl DB, Engelke J, Kawahara-Baccus T, Krueger D, Colman RJ. Bone loss detection in rats using a mouse densitometer. J Bone Miner Res. 2003;18(2):370-375.PubMedCrossRefGoogle Scholar
  13. 13.
    Nazarian A, Cory E, Muller R, Snyder BD. Shortcomings of DXA to assess changes in bone tissue density and microstructure induced by metabolic bone diseases in rat models. Osteoporos Int. 2009;20(1):123-132.PubMedCrossRefGoogle Scholar
  14. 14.
    Gasser JA. Bone measurements by peripheral quantitative computed tomography in rodents. Methods Mol Med. 2003; 80:323-341.PubMedGoogle Scholar
  15. 15.
    Stauber M, Muller R. Micro-computed tomography: a method for the non-destructive evaluation of the three-dimensional structure of biological specimens. Methods Mol Biol. 2008;455:273-292.PubMedCrossRefGoogle Scholar
  16. 16.
    Andersson N, Lindberg MK, Ohlsson C, Andersson K, Ryberg B. Repeated in vivo determinations of bone mineral density during parathyroid hormone treatment in ovariectomized mice. J Endocrinol. 2001;170(3):529-537.PubMedCrossRefGoogle Scholar
  17. 17.
    Idris AI, Greig IR, Bassonga-Landao E, Ralston SH, van ’t Hof RJ. Identification of novel biphenyl carboxylic acid derivatives as novel antiresorptive agents that do not impair parathyroid hormone-induced bone formation. Endocri­nology. 2009;150(1):5-13.PubMedCrossRefGoogle Scholar
  18. 18.
    Idris AI, van ’t Hof RJ, Greig IR, et al. Regulation of bone mass, bone loss and osteoclast activity by cannabinoid receptors. Nat Med. 2005;11(7):774-779.PubMedCrossRefGoogle Scholar
  19. 19.
    Waarsing JH, Day JS, Weinans H. Longitudinal micro-CT scans to evaluate bone architecture. J Musculoskelet Neu­ronal Interact. 2005;5(4):310-312.PubMedGoogle Scholar
  20. 20.
    Boyd SK, Moser S, Kuhn M, et al. Evaluation of three-dimensional image registration methodologies for in vivo micro-computed tomography. Ann Biomed Eng. 2006; 34(10):1587-1599.PubMedCrossRefGoogle Scholar
  21. 21.
    Boyd SK, Davison P, Muller R, Gasser JA. Monitoring individual morphological changes over time in ovariectomized rats by in vivo micro-computed tomography. Bone. 2006; 39(4):854-862.PubMedCrossRefGoogle Scholar
  22. 22.
    Klinck RJ, Campbell GM, Boyd SK. Radiation effects on bone architecture in mice and rats resulting from in vivo micro-computed tomography scanning. Med Eng Phys. 2008;30(7):888-895.PubMedCrossRefGoogle Scholar
  23. 23.
    Parfitt AM, Drezner MK, Glorieux FH, et al. Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res. 1987;2(6):595-610.PubMedCrossRefGoogle Scholar
  24. 24.
    Erben RG. Embedding of bone samples in methylmethacrylate: an improved method suitable for bone histomorphometry, histochemistry, and immunohistochemistry. J Histochem Cytochem. 1997;45(2):307-313.PubMedCrossRefGoogle Scholar
  25. 25.
    Erben RG. Bone-labeling techniques. In: An YH, Martin KL, eds. Handbook of Histology Methods for Bone and Cartilage. Totowa: Humana Press; 2003:99-117.CrossRefGoogle Scholar
  26. 26.
    Wronski TJ, Cintron M, Dann LM. Temporal relationship between bone loss and increased bone turnover in ovariectomized rats. Calcif Tissue Int. 1988;43(3):179-183.PubMedCrossRefGoogle Scholar
  27. 27.
    Power RA, Iwaniec UT, Magee KA, Mitova-Caneva NG, Wronski TJ. Basic fibroblast growth factor has rapid bone anabolic effects in ovariectomized rats. Osteoporos Int. 2004;15(9):716-723.PubMedCrossRefGoogle Scholar
  28. 28.
    Lesclous P, Guez D, Saffar JL. Short-term prevention of osteoclastic resorption and osteopenia in ovariectomized rats treated with the H(2) receptor antagonist cimetidine. Bone. 2002;30(1):131-136.PubMedCrossRefGoogle Scholar
  29. 29.
    Clemens JD, Herrick MV, Singer FR, Eyre DR. Evidence that serum NTx (collagen-type I N-telopeptides) can act as an immunochemical marker of bone resorption. Clin Chem. 1997;43(11):2058-2063.PubMedGoogle Scholar
  30. 30.
    Rissanen JP, Suominen MI, Peng Z, Halleen JM. Secreted tartrate-resistant acid phosphatase 5b is a marker of osteoclast number in human osteoclast cultures and the rat ovariectomy model. Calcif Tissue Int. 2008;82(2):108-115.PubMedCrossRefGoogle Scholar
  31. 31.
    Gaumet N, Seibel MJ, Coxam V, Davicco MJ, Lebecque P, Barlet JP. Influence of ovariectomy and estradiol treatment on calcium homeostasis during aging in rats. Arch Physiol Biochem. 1997;105(5):435-444.PubMedCrossRefGoogle Scholar
  32. 32.
    Rissanen JP, Suominen MI, Peng Z, et al. Short-term changes in serum PINP predict long-term changes in trabecular bone in the rat ovariectomy model. Calcif Tissue Int. 2008; 82(2):155-161.PubMedCrossRefGoogle Scholar
  33. 33.
    Hassager C, Risteli J, Risteli L, Jensen SB, Christiansen C. Diurnal variation in serum markers of type I collagen synthesis and degradation in healthy premenopausal women. J Bone Miner Res. 1992;7(11):1307-1311.PubMedCrossRefGoogle Scholar
  34. 34.
    Shao P, Ohtsuka-Isoya M, Shinoda H. Circadian rhythms in serum bone markers and their relation to the effect of etidronate in rats. Chronobiol Int. 2003;20(2):325-336.PubMedCrossRefGoogle Scholar
  35. 35.
    Klinck J, Boyd SK. The magnitude and rate of bone loss in ovariectomized mice differs among inbred strains as determined by longitudinal in vivo micro-computed tomography. Calcif Tissue Int. 2008;83(1):70-79.PubMedCrossRefGoogle Scholar
  36. 36.
    Seedor JG, Quartuccio HA, Thompson DD. The bisphosphonate alendronate (MK-217) inhibits bone loss due to ovariectomy in rats. J Bone Miner Res. 1991;6(4):339-346.PubMedCrossRefGoogle Scholar
  37. 37.
    Brouwers JE, Lambers FM, Gasser JA, van Rietbergen B, Huiskes R. Bone degeneration and recovery after early and late bisphosphonate treatment of ovariectomized wistar rats assessed by in vivo micro-computed tomography. Calcif Tissue Int. 2008;82(3):202-211.PubMedCrossRefGoogle Scholar
  38. 38.
    Kim MK, Kim HD, Park JH, et al. An orally active cathepsin K inhibitor, furan-2-carboxylic acid, 1-{1-[4-fluoro-2-(2-oxo-pyrrolidin-1-yl)-phenyl]-3-oxo-piperidin-4-ylcarba moyl}-cyclohexyl)-amide (OST-4077), inhibits osteoclast activity in vitro and bone loss in ovariectomized rats. J Pharmacol Exp Ther. 2006;318(2):555-562.PubMedCrossRefGoogle Scholar
  39. 39.
    van ’t Hof RJ, Idris AI, Ridge SA, Dunford J, Greig IR, Ralston SH. Identification of biphenylcarboxylic acid derivatives as a novel class of bone resorption inhibitors. J Bone Miner Res. 2004;19(10):1651-1660.CrossRefGoogle Scholar
  40. 40.
    Schaller S, Henriksen K, Sveigaard C, et al. The chloride channel inhibitor NS3736 [corrected] prevents bone resorption in ovariectomized rats without changing bone formation. J Bone Miner Res. 2004;19(7):1144-1153.PubMedCrossRefGoogle Scholar
  41. 41.
    Marquis RW, Ru Y, LoCastro SM, et al. Azepanone-based inhibitors of human and rat cathepsin K. J Med Chem. 2001;44(9):1380-1395.PubMedCrossRefGoogle Scholar
  42. 42.
    Palmer JT, Bryant C, Wang DX, et al. Design and synthesis of tri-ring P3 benzamide-containing aminonitriles as potent, selective, orally effective inhibitors of cathepsin K. J Med Chem. 2005;48(24):7520-7534.PubMedCrossRefGoogle Scholar
  43. 43.
    Stroup GB, Lark MW, Veber DF, et al. Potent and selective inhibition of human cathepsin K leads to inhibition of bone resorption in vivo in a nonhuman primate. J Bone Miner Res. 2001;16(10):1739-1746.PubMedCrossRefGoogle Scholar
  44. 44.
    Brouwers JE, van Rietbergen B, Huiskes R, Ito K. Effects of PTH treatment on tibial bone of ovariectomized rats assessed by in vivo micro-CT. Osteoporos Int. 2009;20(11):1823-1835.PubMedCrossRefGoogle Scholar
  45. 45.
    Liu CC, Kalu DN. Human parathyroid hormone-(1–34) prevents bone loss and augments bone formation in sexually mature ovariectomized rats. J Bone Miner Res. 1990;5(9):973-982.PubMedCrossRefGoogle Scholar
  46. 46.
    Wronski TJ, Yen CF, Qi H, Dann LM. Parathyroid hormone is more effective than estrogen or bisphosphonates for ­restoration of lost bone mass in ovariectomized rats. Endocrinology. 1993;132(2):823-831.PubMedCrossRefGoogle Scholar
  47. 47.
    Mosekilde L, Danielsen CC, Gasser J. The effect on vertebral bone mass and strength of long term treatment with antiresorptive agents (estrogen and calcitonin), human parathyroid hormone-(1–38), and combination therapy, assessed in aged ovariectomized rats. Endocrinology. 1994;134(5): 2126-2134.PubMedCrossRefGoogle Scholar
  48. 48.
    Fuchs RK, Allen MR, Condon KW, et al. Strontium ranelate does not stimulate bone formation in ovariectomized rats. Osteoporos Int. 2008;19(9):1331-1341.PubMedCrossRefGoogle Scholar
  49. 49.
    Bain SD, Jerome C, Shen V, Dupin-Roger I, Ammann P. Strontium ranelate improves bone strength in ovariectomized rat by positively influencing bone resistance determinants. Osteoporos Int. 2009;20(8):1417-1428.PubMedCrossRefGoogle Scholar
  50. 50.
    Marie PJ, Hott M, Modrowski D, et al. An uncoupling agent containing strontium prevents bone loss by depressing bone resorption and maintaining bone formation in estrogen-­deficient rats. J Bone Miner Res. 1993;8(5):607-615.PubMedCrossRefGoogle Scholar
  51. 51.
    Kumar S, Matheny CJ, Hoffman SJ, et al. An orally active calcium-sensing receptor antagonist that transiently increases plasma concentrations of PTH and stimulates bone formation. Bone. 2010;46:534-542.PubMedCrossRefGoogle Scholar
  52. 52.
    Judex S, Lei X, Han D, Rubin C. Low-magnitude mechanical signals that stimulate bone formation in the ovariectomized rat are dependent on the applied frequency but not on the strain magnitude. J Biomech. 2007;40(6):1333-1339.PubMedCrossRefGoogle Scholar
  53. 53.
    Brouwers JE, van Rietbergen B, Ito K, Huiskes R. Effects of vibration treatment on tibial bone of ovariectomized rats analyzed by in vivo micro-CT. J Orthop Res. 2010;28(1):62-69.PubMedGoogle Scholar
  54. 54.
    Gasser JA, Kneissel M, Thomsen JS, Mosekilde L. PTH and interactions with bisphosphonates. J Musculoskelet Neuronal Interact. 2000;1(1):53-56.PubMedGoogle Scholar
  55. 55.
    Fuchs RK, Phipps RJ, Burr DB. Recovery of trabecular and cortical bone turnover after discontinuation of risedronate and alendronate therapy in ovariectomized rats. J Bone Miner Res. 2008;23(10):1689-1697.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Department of Rheumatology, Molecular Medicine Centre, Institute of Genetics and Molecular MedicineUniversity of Edinburgh, Western General HospitalMidlothianUK

Personalised recommendations