Skip to main content

Methods in Bone Biology in Animals: Biochemical Markers

  • Chapter
  • First Online:
Book cover Osteoporosis Research

Abstract

Osteoporosis represents a chronic disease, which is usually preceded by an extended period of time during which bone metabolism is already disturbed. In humans this period can last for more than a decade.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Seibel MJ. Biochemical markers of bone remodeling. Endocrinol Metab Clin North Am. 2003;32:83-113.

    Article  PubMed  CAS  Google Scholar 

  2. Seibel MJ. Biochemical markers of bone turnover: Part I: Biochemistry and variability. Clin Biochem Rev. 2005;26:97-122.

    PubMed  Google Scholar 

  3. Herrmann M, Klitscher D, Georg T, Frank J, Marzi I, Herrmann W. Different kinetics of bone markers in normal and delayed fracture healing of long bones. Clin Chem. 2002;48:2263-2266.

    PubMed  CAS  Google Scholar 

  4. Garnero P, Piperno M, Gineyts E, Christgau S, Delmas PD, Vignon E. Cross sectional evaluation of biochemical markers of bone, cartilage, and synovial tissue metabolism in patients with knee osteoarthritis: relations with disease activity and joint damage. Ann Rheum Dis. 2001;60:619-626.

    Article  PubMed  CAS  Google Scholar 

  5. Berger CE, Kroner A, Kristen KH, Minai-Pour M, Leitha T, Engel A. Spontaneous osteonecrosis of the knee: biochemical markers of bone turnover and pathohistology. Osteoar­thritis Cartilage. 2005;13:716-721.

    Article  PubMed  CAS  Google Scholar 

  6. Berger CE, Kroner AH, Minai-Pour MB, Ogris E, Engel A. Biochemical markers of bone metabolism in bone marrow edema syndrome of the hip. Bone. 2003;33:346-351.

    Article  PubMed  CAS  Google Scholar 

  7. Herrmann M, Seibel M. The amino- and carboxyterminal cross-linked telopeptides of collagen type I, NTX-I and CTX-I: a comparative review. Clin Chim Acta. 2008;393:57-75.

    Article  PubMed  CAS  Google Scholar 

  8. Ott SM. Histomorphometric measurements of bone turnover, mineralization, and volume. Clin J Am Soc Nephrol. 2008;3(Suppl 3):S151-S156.

    Article  PubMed  Google Scholar 

  9. Pogoda P, Priemel M, Rueger JM, Amling M. Bone remodeling: new aspects of a key process that controls skeletal maintenance and repair. Osteoporos Int. 2005;16(Suppl 2): S18-S24 (Epub November 16, 2004; S18–S24).

    Article  PubMed  CAS  Google Scholar 

  10. Seeman E. Bone modeling and remodeling. Crit Rev Eukaryot Gene Expr. 2009;19:219-233.

    PubMed  CAS  Google Scholar 

  11. Raisz LG. Physiology and pathophysiology of bone remodeling. Clin Chem. 1999;45:1353-1358.

    PubMed  CAS  Google Scholar 

  12. Sorensen MG, Henriksen K, Schaller S, Karsdal MA. Biochemical markers in preclinical models of osteoporosis. Biomarkers. 2007;12:266-286.

    Article  PubMed  CAS  Google Scholar 

  13. Garnero P. Biomarkers for osteoporosis management: utility in diagnosis, fracture risk prediction and therapy monitoring. Mol Diagn Ther. 2008;12:157-170.

    PubMed  CAS  Google Scholar 

  14. Stein GS, Lian JB. Molecular mechanisms mediating proliferation/differentiation interrelationships during progressive development of the osteoblast phenotype. Endocr Rev. 1993;14:424-442.

    PubMed  CAS  Google Scholar 

  15. Owen TA, Aronow M, Shalhoub V, et al. Progressive development of the rat osteoblast phenotype in vitro: reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. J Cell Physiol. 1990;143:420-430.

    Article  PubMed  CAS  Google Scholar 

  16. Lian JB, Stein GS. Concepts of osteoblast growth and differentiation: basis for modulation of bone cell development and tissue formation. Crit Rev Oral Biol Med. 1992;3:269-305.

    PubMed  CAS  Google Scholar 

  17. Siggelkow H, Rebenstorff K, Kurre W, et al. Development of the osteoblast phenotype in primary human osteoblasts in culture: comparison with rat calvarial cells in osteoblast differentiation. J Cell Biochem. 1999;75:22-35.

    Article  PubMed  CAS  Google Scholar 

  18. Leeming DJ, Alexandersen P, Karsdal MA, Qvist P, Schaller S, Tanko LB. An update on biomarkers of bone turnover and their utility in biomedical research and clinical practice. Eur J Clin Pharmacol. 2006;62:781-792.

    Article  PubMed  CAS  Google Scholar 

  19. Ferron M, Hinoi E, Karsenty G, Ducy P. Osteocalcin differentially regulates beta cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proc Natl Acad Sci USA. 2008;105:5266-5270.

    Article  PubMed  CAS  Google Scholar 

  20. Lee NK, Sowa H, Hinoi E, et al. Endocrine regulation of energy metabolism by the skeleton. Cell. 2007;130:456-469.

    Article  PubMed  CAS  Google Scholar 

  21. Nesbitt SA, Horton MA. Trafficking of matrix collagens through bone-resorbing osteoclasts. Science. 1997;276:266-269.

    Article  PubMed  CAS  Google Scholar 

  22. Vaananen HK, Zhao H, Mulari M, Halleen JM. The cell biology of osteoclast function. J Cell Sci. 2000;113:377-381.

    PubMed  CAS  Google Scholar 

  23. Vaaraniemi J, Halleen JM, Kaarlonen K, et al. Intracellular machinery for matrix degradation in bone-resorbing osteoclasts. J Bone Miner Res. 2004;19:1432-1440.

    Article  PubMed  CAS  Google Scholar 

  24. Halleen JM, Alatalo SL, Janckila AJ, Woitge HW, Seibel MJ, Vaananen HK. Serum tartrate-resistant acid phosphatase 5b is a specific and sensitive marker of bone resorption. Clin Chem. 2001;47:597-600.

    PubMed  CAS  Google Scholar 

  25. Halleen JM, Ranta R. Tartrate-resistant acid phosphatase as a serum marker of bone resorption. Am Clin Lab. 2001;20:29-30.

    PubMed  CAS  Google Scholar 

  26. Halleen JM. Tartrate-resistant acid phosphatase 5B is a specific and sensitive marker of bone resorption. Anticancer Res. 2003;23:1027-1029.

    PubMed  CAS  Google Scholar 

  27. Minkin C. Bone acid phosphatase: tartrate-resistant acid phosphatase as a marker of osteoclast function. Calcif Tissue Int. 1982;34:285-290.

    Article  PubMed  CAS  Google Scholar 

  28. Chu P, Chao TY, Lin YF, Janckila AJ, Yam LT. Correlation between histomorphometric parameters of bone resorption and serum type 5b tartrate-resistant acid phosphatase in uremic patients on maintenance hemodialysis. Am J Kidney Dis. 2003;41:1052-1059.

    Article  PubMed  CAS  Google Scholar 

  29. Janckila AJ, Nakasato YR, Neustadt DH, Yam LT. Disease-specific expression of tartrate-resistant acid phosphatase isoforms. J Bone Miner Res. 2003;18:1916-1919.

    Article  PubMed  CAS  Google Scholar 

  30. Janckila AJ, Takahashi K, Sun SZ, Yam LT. Tartrate-resistant acid phosphatase isoform 5b as serum marker for osteoclastic activity. Clin Chem. 2001;47:74-80.

    PubMed  CAS  Google Scholar 

  31. Meier C, Meinhardt U, Greenfield JR, et al. Serum cathepsin K concentrations reflect osteoclastic activity in women with postmenopausal osteoporosis and patients with Paget’s disease. Clin Lab. 2006;52:1-10.

    PubMed  CAS  Google Scholar 

  32. Fuller K, Lawrence KM, Ross JL, et al. Cathepsin K inhibitors prevent matrix-derived growth factor degradation by human osteoclasts. Bone. 2008;42:200-211.

    Article  PubMed  CAS  Google Scholar 

  33. Skoumal M, Haberhauer G, Kolarz G, Hawa G, Woloszczuk W, Klingler A. Serum cathepsin K levels of patients with longstanding rheumatoid arthritis: correlation with radiological destruction. Arthritis Res Ther. 2005;7:R65-R70.

    Article  PubMed  CAS  Google Scholar 

  34. Munoz-Torres M, Reyes-Garcia R, Mezquita-Raya P, et al. Serum cathepsin K as a marker of bone metabolism in postmenopausal women treated with alendronate. Maturitas. 2009;64:188-192.

    Article  PubMed  CAS  Google Scholar 

  35. Saftig P, Hunziker E, Everts V, et al. Functions of cathepsin K in bone resorption: lessons from cathepsin K deficient mice. Adv Exp Med Biol. 2000;477:293-303.

    Article  PubMed  CAS  Google Scholar 

  36. Gowen M, Lazner F, Dodds R, et al. Cathepsin K knockout mice develop osteopetrosis due to a deficit in matrix degradation but not demineralization. J Bone Miner Res. 1999; 14:1654-1663.

    Article  PubMed  CAS  Google Scholar 

  37. McCudden CR, Kraus VB. Biochemistry of amino acid racemization and clinical application to musculoskeletal disease. Clin Biochem. 2006;39:1112-1130.

    Article  PubMed  CAS  Google Scholar 

  38. Garnero P, Ferreras M, Karsdal MA, et al. The type I collagen fragments ICTP and CTX reveal distinct enzymatic pathways of bone collagen degradation. J Bone Miner Res. 2003;18:859-867.

    Article  PubMed  CAS  Google Scholar 

  39. Kong QQ, Sun TW, Dou QY, et al. Beta-CTX and ICTP act as indicators of skeletal metastasis status in male patients with non-small cell lung cancer. Int J Biol Markers. 2007;22:214-220.

    PubMed  CAS  Google Scholar 

  40. Risteli J, Elomaa I, Niemi S, Novamo A, Risteli L. Radioimmunoassay for the pyridinoline cross-linked carboxy-terminal telopeptide of type I collagen: a new serum marker of bone collagen degradation. Clin Chem. 1993; 39:635-640.

    PubMed  CAS  Google Scholar 

  41. Risteli J, Risteli L. Analysing connective tissue metabolites in human serum. Biochemical, physiological and methodological aspects. J Hepatol. 1995;22:77-81.

    Article  PubMed  CAS  Google Scholar 

  42. Risteli L, Risteli J. Biochemical markers of bone metabolism. Ann Med. 1993;25:385-393.

    Article  PubMed  CAS  Google Scholar 

  43. DeLuca HF. Overview of general physiologic features and functions of vitamin D. Am J Clin Nutr. 2004;80: 1689S-1696S.

    PubMed  CAS  Google Scholar 

  44. Lips P. Vitamin D deficiency and secondary hyperparathyroidism in the elderly: consequences for bone loss and fractures and therapeutic implications. Endocr Rev. 2001;22: 477-501.

    Article  PubMed  CAS  Google Scholar 

  45. Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357:266-281.

    Article  PubMed  CAS  Google Scholar 

  46. Lepage R, Roy L, Brossard JH, et al. A non-(1-84) circulating parathyroid hormone (PTH) fragment interferes significantly with intact PTH commercial assay measurements in uremic samples. Clin Chem. 1998;44:805-809.

    PubMed  CAS  Google Scholar 

  47. Solal ME, Sebert JL, Boudailliez B, et al. Comparison of intact, midregion, and carboxy terminal assays of parathyroid hormone for the diagnosis of bone disease in hemodialyzed patients. J Clin Endocrinol Metab. 1991;73:516-524.

    Article  PubMed  CAS  Google Scholar 

  48. Stability of N-MID osteocalcin in serum, heparin- and EDTA-plasma over a 24 month period at −70°C. www.radmed.com.tr/usr_img/nonizotopik/n_mid_osteo/eng_nmid_osteocalcin_elisa_1006a.pdf.pdf. 2010. 18-3-2010. Ref Type: Internet Communication.

  49. Bais R, Edwards JB. An optimized continuous-monitoring procedure for semiautomated determination of serum acid phosphatase activity. Clin Chem. 1976;22:2025-2028.

    PubMed  CAS  Google Scholar 

  50. Tsutsumi H, Katagiri K, Morimoto M, Nasu T, Tanigawa M, Mamba K. Diurnal variation and age-related changes of bone turnover markers in female Gottingen minipigs. Lab Anim. 2004;38:439-446.

    Article  PubMed  CAS  Google Scholar 

  51. Srivastava AK, Bhattacharyya S, Li X, Mohan S, Baylink DJ. Circadian and longitudinal variation of serum C-telopeptide, osteocalcin, and skeletal alkaline phosphatase in C3H/HeJ mice. Bone. 2001;29:361-367.

    Article  PubMed  CAS  Google Scholar 

  52. Clowes JA, Hannon RA, Yap TS, Hoyle NR, Blumsohn A, Eastell R. Effect of feeding on bone turnover markers and its impact on biological variability of measurements. Bone. 2002;30:886-890.

    Article  PubMed  CAS  Google Scholar 

  53. Hannon R, Eastell R. Preanalytical variability of biochemical markers of bone turnover. Osteoporos Int. 2000;11:S30-S44.

    Article  PubMed  Google Scholar 

  54. Bernardi D, Zaninotto M, Plebani M. Requirements for improving quality in the measurement of bone markers. Clin Chim Acta. 2004;346:79-86.

    Article  PubMed  CAS  Google Scholar 

  55. Eriksen EF, Charles P, Melsen F, Mosekilde L, Risteli L, Risteli J. Serum markers of type I collagen formation and degradation in metabolic bone disease: correlation with bone histomorphometry. J Bone Miner Res. 1993;8:127-132.

    Article  PubMed  CAS  Google Scholar 

  56. Schaller S, Henriksen K, Sveigaard C, et al. The chloride channel inhibitor NS3736 [corrected] prevents bone resorption in ovariectomized rats without changing bone formation. J Bone Miner Res. 2004;19:1144-1153.

    Article  PubMed  CAS  Google Scholar 

  57. Visentin L, Dodds RA, Valente M, et al. A selective inhibitor of the osteoclastic V-H(+)-ATPase prevents bone loss in both thyroparathyroidectomized and ovariectomized rats. J Clin Invest. 2000;106:309-318.

    Article  PubMed  CAS  Google Scholar 

  58. Garnero P, Gineyts E, Schaffer AV, Seaman J, Delmas PD. Measurement of urinary excretion of nonisomerized and beta-isomerized forms of type I collagen breakdown products to monitor the effects of the bisphosphonate zoledronate in Paget’s disease. Arthritis Rheum. 1998;41:354-360.

    Article  PubMed  CAS  Google Scholar 

  59. Chapurlat RD, Garnero P, Breart G, Meunier PJ, Delmas PD. Serum type I collagen breakdown product (serum CTX) predicts hip fracture risk in elderly women: the EPIDOS study. Bone. 2000;27:283-286.

    Article  PubMed  CAS  Google Scholar 

  60. Hamrick MW, Ding KH, Pennington C, et al. Age-related loss of muscle mass and bone strength in mice is associated with a decline in physical activity and serum leptin. Bone. 2006;39:845-853.

    Article  PubMed  CAS  Google Scholar 

  61. Corlett SC, Couch M, Care AD, Sykes AR. Measurement of plasma osteocalcin in sheep: assessment of circadian variation, the effects of age and nutritional status and the response to perturbation of the adrenocortical axis. Exp Physiol. 1990;75:515-527.

    PubMed  CAS  Google Scholar 

  62. Farrugia W, Fortune CL, Heath J, Caple IW, Wark JD. Osteocalcin as an index of osteoblast function during and after ovine pregnancy. Endocrinology. 1989;125:1705-1710.

    Article  PubMed  CAS  Google Scholar 

  63. Sigrist IM, Gerhardt C, Alini M, Schneider E, Egermann M. The long-term effects of ovariectomy on bone metabolism in sheep. J Bone Miner Metab. 2007;25:28-35.

    Article  PubMed  CAS  Google Scholar 

  64. DeLaurier A, Jackson B, Pfeiffer D, Ingham K, Horton MA, Price JS. A comparison of methods for measuring serum and urinary markers of bone metabolism in cats. Res Vet Sci. 2004;77:29-39.

    Article  PubMed  CAS  Google Scholar 

  65. Ladlow JF, Hoffmann WE, Breur GJ, Richardson DC, Allen MJ. Biological variability in serum and urinary indices of bone formation and resorption in dogs. Calcif Tissue Int. 2002;70:186-193.

    Article  PubMed  CAS  Google Scholar 

  66. Hoegh-Andersen P, Tanko LB, Andersen TL, et al. Ovariectomized rats as a model of postmenopausal osteoarthritis: validation and application. Arthritis Res Ther. 2004; 6:R169-R180.

    Article  PubMed  CAS  Google Scholar 

  67. Chavassieux P, Garnero P, Duboeuf F, et al. Effects of a new selective estrogen receptor modulator (MDL 103, 323) on cancellous and cortical bone in ovariectomized ewes: a biochemical, histomorphometric, and densitometric study. J Bone Miner Res. 2001;16:89-96.

    Article  PubMed  CAS  Google Scholar 

  68. Lane NE. An update on glucocorticoid-induced osteoporosis. Rheum Dis Clin North Am. 2001;27:235-253.

    Article  PubMed  CAS  Google Scholar 

  69. Tsugeno H, Goto B, Fujita T, et al. Oral glucocorticoid-induced fall in cortical bone volume and density in postmenopausal asthmatic patients. Osteoporos Int. 2001;12:266-270.

    Article  PubMed  CAS  Google Scholar 

  70. Canalis E. Mechanisms of glucocorticoid-induced osteoporosis. Curr Opin Rheumatol. 2003;15:454-457.

    Article  PubMed  CAS  Google Scholar 

  71. Schorlemmer S, Gohl C, Iwabu S, Ignatius A, Claes L, Augat P. Glucocorticoid treatment of ovariectomized sheep affects mineral density, structure, and mechanical properties of cancellous bone. J Bone Miner Res. 2003;18:2010-2015.

    Article  PubMed  CAS  Google Scholar 

  72. Iwamoto J, Seki A, Takeda T, Yamada H, Sato Y, Yeh JK. Effects of alfacalcidol on cancellous and cortical bone mass in rats treated with glucocorticoid: a bone histomorphometry study. J Nutr Sci Vitaminol (Tokyo). 2007;53:191-197.

    Article  CAS  Google Scholar 

  73. Kaji H, Yamauchi M, Chihara K, Sugimoto T. Glucocorticoid excess affects cortical bone geometry in premenopausal, but not postmenopausal, women. Calcif Tissue Int. 2008;82:182-190.

    Article  PubMed  CAS  Google Scholar 

  74. Weinstein RS, Jilka RL, Parfitt AM, Manolagas SC. Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone. J Clin Invest. 1998;102:274-282.

    Article  PubMed  CAS  Google Scholar 

  75. O’Brien CA, Jia D, Plotkin LI, et al. Glucocorticoids act directly on osteoblasts and osteocytes to induce their apoptosis and reduce bone formation and strength. Endocrinology. 2004;145:1835-1841.

    Article  PubMed  Google Scholar 

  76. Weinstein RS, Chen JR, Powers CC, et al. Promotion of osteoclast survival and antagonism of bisphosphonate-induced osteoclast apoptosis by glucocorticoids. J Clin Invest. 2002;109:1041-1048.

    PubMed  CAS  Google Scholar 

  77. King CS, Weir EC, Gundberg CW, Fox J, Insogna KL. Effects of continuous glucocorticoid infusion on bone metabolism in the rat. Calcif Tissue Int. 1996;59:184-191.

    Article  PubMed  CAS  Google Scholar 

  78. Herrmann M, Henneicke H, Street J, et al. The challenge of continuous exogenous glucocorticoid administration in mice. Steroids. 2009;74:245-249.

    Article  PubMed  CAS  Google Scholar 

  79. Chavassieux P, Buffet A, Vergnaud P, Garnero P, Meunier PJ. Short-term effects of corticosteroids on trabecular bone remodeling in old ewes. Bone. 1997;20:451-455.

    Article  PubMed  CAS  Google Scholar 

  80. O’Connell SL, Tresham J, Fortune CL, et al. Effects of prednisolone and deflazacort on osteocalcin metabolism in sheep. Calcif Tissue Int. 1993;53:117-121.

    Article  PubMed  Google Scholar 

  81. Karsdal MA, Henriksen K, Sorensen MG, et al. Acidification of the osteoclastic resorption compartment provides insight into the coupling of bone formation to bone resorption. Am J Pathol. 2005;166:467-476.

    Article  PubMed  CAS  Google Scholar 

  82. Ding M, Cheng L, Bollen P, Schwarz P, Overgaard S. Glucocorticoid induced osteopenia in cancellous bone of sheep: validation of large animal model for spine fusion and biomaterial research. Spine (Phila Pa 1976). 2010;35:363-370.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Herrmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Herrmann, M. (2011). Methods in Bone Biology in Animals: Biochemical Markers. In: Duque, G., Watanabe, K. (eds) Osteoporosis Research. Springer, London. https://doi.org/10.1007/978-0-85729-293-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-293-3_6

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-292-6

  • Online ISBN: 978-0-85729-293-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics