Skeletal Phenotyping in Rodents: Tissue Isolation and Manipulation

  • Janet E. Henderson
  • Chan Gao
  • Edward J. Harvey


The pioneering work of Rudolph Jaenisch at the Whitehead Institute1 and Mario Capecchi at the Howard Hughes Institute2 used modification of the mouse genome to understand the etiology and pathogenesis of human disease.


Bone Mineral Density Bone Strength Bone Regeneration Tartrate Resistant Acid Phosphatase Allograft Bone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported in part by grants from the Canadian Institutes of Health Research, Genome Québec, the Fonds de la recherche en sante Quebec sponsored Réseau de recherché en transgenèse du Québec, and the Réseau de recherche en santé buccodentaire et osseuse. Dr. C. Gao is a scholar of the MENTOR Strategic Training in Health Research program. The authors thank Ailian Li, Wei Li, and Huifen Wang for their invaluable assistance with the mouse phenotyping work and Dr. J. Seuntjens of the Medical Physics Unit, McGill University, for collaboration with the mouse irradiation studies.


  1.  1.
    Jaenisch R. Mammalian neural crest cells participate in normal embryonic development on microinjection into post-implantation mouse embryos. Nature. 1985;318:181-183.PubMedCrossRefGoogle Scholar
  2.  2.
    Thomas K, Capecchi M. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell. 1987; 51:503-512.PubMedCrossRefGoogle Scholar
  3.  3.
    Fortin A, Diez E, Henderson J, Mogil J, Gros P, Skamene E. The AcB/BcA recombinant congenic strains of mice: strategies for phenotype dissection, mapping and cloning of ­quantitative trait genes. Novartis Found Symp. 2007;281: 141-153.PubMedCrossRefGoogle Scholar
  4.  4.
    Rivadeneira F, Consortium GFfO. Twenty bone mineral-density loci identified by large-scal meta-analysis of genome-wide association studies. Nat Genet. 2009;41:1199-1206.PubMedCrossRefGoogle Scholar
  5.  5.
    Miller P, Zapalowski C. Bone mineral density measurements. In: Goltzman D, ed. The Osteoporosis Primer. Cambridge: Cambridge University Press; 2000:262-276.Google Scholar
  6.  6.
    Klein R, Mitchell S, Phillips T, Belknap J, Orwoll E. Quan­titative trait loci affecting peak bone mineral density in mice. J Bone Miner Res. 1998;13:1648-1656.PubMedCrossRefGoogle Scholar
  7.  7.
    Lim L, Hoeksema L, Sherin K, Committee APP. Screening for osteoporosis in the adult US population: ACPM position statement on preventative practice. Am J Prev Med. 2009;36: 366-375.PubMedCrossRefGoogle Scholar
  8.  8.
    Griffith J, Genant H. Bone mass and architecture determination: state of the art. Best Pract Res Clin Endocrinol Metab. 2008;22:737-764.PubMedCrossRefGoogle Scholar
  9.  9.
    Richards J, Kavvoura F, Rivadeneira F, GFfO Consortium. Collaborative meta-analysis: association of 150 candidate genes with osteoporosis and osteoporotic fractures. Ann Int Med. 2009;151:528-537.PubMedGoogle Scholar
  10. 10.
    Karsenty G. Transcriptional control of skeletogenesis. Annu Rev Genomics Hum Genet. 2008;9:183-196.PubMedCrossRefGoogle Scholar
  11. 11.
    Flenniken AM, Osborne L, Anderson N, Disease CfMH. A Gja1 missense mutation in a mouse model of oculo­dentodigital ­dysplasia (ODDD). Development. 2005;132:4375-4386.PubMedCrossRefGoogle Scholar
  12. 12.
    Ochotny N, Flenniken A, Owen C, et al. A point mutation in the V-ATPase subunit a3, R740S, uncouples ATP hydrolysis from proton transport and results in a dominant osteopetrosis phenotype. J Bone Miner Res. 2011 in press Feb 8. doi: 10.1002/.Google Scholar
  13. 13.
    Amizuka N, Davidson D, Liu H, et al. Signaling by fibroblast growth factor receptor 3 (FGFR3) and parathyroid hormone related protein (PTHrP) coordinate cartilage and bone development. Bone. 2003;34:13-25.CrossRefGoogle Scholar
  14. 14.
    Miao D, Liu H, Plut P, et al. Impaired endochondral bone development and osteopenia in Gli2 deficient mice. Exp Cell Res. 2003;294:210-222.CrossRefGoogle Scholar
  15. 15.
    Valverde-Franco G, Liu H, Davidson D, et al. Defective bone mineralization and osteopenia in young adult FGFR3-/- mice. Hum Mol Genet. 2004;13:271-284.PubMedCrossRefGoogle Scholar
  16. 16.
    Richard S, Valverde-Franco G, Tremblay GA, et al. Ablation of the Sam68 RNA-binding protein protects mice from age-related bone loss. PLoS Genet. 2005;1:e74-e84.PubMedCrossRefGoogle Scholar
  17. 17.
    Valverde-Franco G, Binette JS, Li W, et al. Defects in articular cartilage and early arthritis in fibroblast growth factor receptor 3 deficient mice. Hum Mol Genet. 2006;15:1783-1792.PubMedCrossRefGoogle Scholar
  18. 18.
    Deckelbaum RA, Majithia A, Booker T, Henderson JE, Loomis CA. The homeoprotein Engrailed-1 has pleiotropic functions in calvarial intramembranous bone formation and remodeling. Development. 2006;133:63-74.PubMedCrossRefGoogle Scholar
  19. 19.
    Lengner CJ, Steinman HA, Gagnon J, et al. Osteoblast differentiation and skeletal development are regulated by Mdm2-p53 signaling. J Cell Biol. 2006;172:909-921.PubMedCrossRefGoogle Scholar
  20. 20.
    Haston CK, Li W, Li A, Lafleur M, Henderson JE. Persistent osteopenia in adult Cftr-deficient mice. Am J Respir Crit Care Med. 2008;177:309-315.PubMedCrossRefGoogle Scholar
  21. 21.
    Rivas D, Li W, Akter R, Henderson J, Duque G. Accelerated features of age-related bone loss in Zmpste24 metalloproteinase-deficient mice. J Gerontol. 2009;10:1015-1024.Google Scholar
  22. 22.
    Marquis J, Gros P. Genetic analysis of resistance to infections in mice: A/J meets C57BL6/J. Curr Top Microbiol Immunol. 2008;321:27-57.PubMedCrossRefGoogle Scholar
  23. 23.
    Beamer W, Donahue L, Rosen C, Baylink D. Genetic variability in adult bone density among inbred strains of mice. Bone. 1996;18:397-403.PubMedCrossRefGoogle Scholar
  24. 24.
    Turner C, Hsieh Y, Muller R, et al. Genetic regulation of cortical and trabecular bone strength and microstructure in inbred strains of mice. J Bone Miner Res. 2000;15:1126-1131.PubMedCrossRefGoogle Scholar
  25. 25.
    Turner C, Hsieh Y, Muller R, et al. Variation in bone biomechanical properties, microstructure, and density in BXH recombinant inbred mice. J Bone Miner Res. 2001;16:206-213.PubMedCrossRefGoogle Scholar
  26. 26.
    Rosen CJ, Dimal HP, Veraeault D, et al. Circulating and skeletal insulin like growth factor 1 (IGF-1) concentrations in two inbred strains of mice with different bone mineral densities. Bone. 1997;21:217-223.PubMedCrossRefGoogle Scholar
  27. 27.
    Delahunty K, Shultz K, Gronowicz G, et al. Congenic mice provide in vivo evidence for a genetic locus that modulates serum insulin-like growth factor-1 and bone acquisition. Endocrinology. 2006;147:3915-3923.PubMedCrossRefGoogle Scholar
  28. 28.
    D’Ascenzo M, Meacham C, Kirzman J, et al. Mutation discovery in the mouse using genetically guided array capture and resequencing. Mamm Genome. 2009;20:424-436.PubMedCrossRefGoogle Scholar
  29. 29.
    Colvin JS, Bohne BA, Harding GW, McEwen DG, Ornitz DM. Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3. Nat Genet. 1996;12:390-397.PubMedCrossRefGoogle Scholar
  30. 30.
    Deng C, Wynshaw-Boris A, Zhou F, Kuo A, Leder P. Fibroblast growth factor receptor 3 is a negative regulator of bone growth. Cell. 1996;84:911-921.PubMedCrossRefGoogle Scholar
  31. 31.
    Chappard D, Palle S, Alexandre C, Vico L, Riffat G. Bone embedding in pure methyl methacrylate at low temperature preserves enzyme activities. Acta Histochem. 1987;81:183-190.PubMedGoogle Scholar
  32. 32.
    Williams B, Insogna K. Where Wnts went: the exploding field of Lrp5 and Lrp6 signaling in bone. J Bone Miner Res. 2009;24:171-178.PubMedCrossRefGoogle Scholar
  33. 33.
    Boyde A, Jones S. Scanning electron microscopy of bone: instrument, specimen ans issues. Microsc Res Tech. 1996;33:92-120.PubMedCrossRefGoogle Scholar
  34. 34.
    Marks S, Odgren P. Structure and development of the skeleton. In: Bilezekian J, Raisz L, Rodan G, eds. Principles of Bone Biology. San Diego: Academic; 2002:3-16.Google Scholar
  35. 35.
    Lvov B. Fifty years of atomic absorption spectrometry. J Anal Chem. 2005;60:382-392.CrossRefGoogle Scholar
  36. 36.
    Boskey A, Camacho N. FT-IR imaging of native and tissue-engineered bone and cartilage. Biomaterials. 2006;28:2465-2478.PubMedCrossRefGoogle Scholar
  37. 37.
    Gentleman E, Swain R, Evans N, et al. Comparative materials differences revealed in engineered bone as a function of cell-specific differentiation. Nat Mater. 2009;8:763-770.PubMedCrossRefGoogle Scholar
  38. 38.
    Goodyear S, Gibson I, Skakle J, Wells R, Aspden R. A comparison of cortical and trabecular bone from C57 Black 6 mice using Raman spectroscopy. Bone. 2009;44:899-907.PubMedCrossRefGoogle Scholar
  39. 39.
    Schulmerich M, Cole J, Kreider J, et al. Transcutaneous Raman spectroscopy of murine bone in vivo. Appl Spectrosc. 2009;63:286-295.PubMedCrossRefGoogle Scholar
  40. 40.
    Mousny M, Banse X, Wise L, et al. The genetic influence on bone susceptibility to fluoride. Bone. 2006;39:1283-1289.PubMedCrossRefGoogle Scholar
  41. 41.
    Yang R, Davies C, Archer C, Richards R. Immunohistochemistry of matrix markers in Technovit 9100 New-embedded undecalcified bone sections. Eur Cell Mater. 2003;6:57-71.PubMedGoogle Scholar
  42. 42.
    Tamer E, Reis R. Progenitor and stem cells for bone and cartilage regeneration. J Tissue Eng Regen Med. 2009;3: 327-337.PubMedCrossRefGoogle Scholar
  43. 43.
    Hasegawa T, Oizumi K, Yoshiko Y, Tanne K, Maeda N, Aubin J. The PPARgamma-selective ligand BRL-49653 differentially regulates the fate choices of rat calvaria versus rat bone marrow stromal cell populations. BMC Dev Biol. 2008;8:1-12.CrossRefGoogle Scholar
  44. 44.
    Aubin JE, Triffitt J. Mesenchymal stem cells and the osteoblast lineage. In: Bilezikian JP, Raisz LG, Rodan GA, eds. Principles of Bone Biology. 2nd ed. New York: Academic; 2002:59-81.CrossRefGoogle Scholar
  45. 45.
    Johnell O, Kanis J. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteo­poros Int. 2006;17:1726-1733.PubMedCrossRefGoogle Scholar
  46. 46.
    Shapiro F. Bone development and its relation to fracture repair. The role mesenchymal osteoblasts and surface osteoblasts. Eur Cells Mater. 2008;15:53-76.Google Scholar
  47. 47.
    Duque D. Bone and fat connection in aging bone. Curr Opin Rheumatol. 2008;20:429-434.PubMedCrossRefGoogle Scholar
  48. 48.
    Pasco J, Sanders KM, Hoekstra FM, Henry MJ, Nicholson GC, Kotowicz MA. The human cost of fracture. Osteoporos Int. 2005;16:2046-2052.PubMedCrossRefGoogle Scholar
  49. 49.
    Jones A, Bucholz R, Bosse M, et al. Recombinant BMP-2 and allograft compared with autogenous bone graft for reconstruction of diaphyseal tibial fractures with cortical defects. A randomized controlled trial. J Bone Joint Surg Am. 2006;88:1431-1441.PubMedCrossRefGoogle Scholar
  50. 50.
    Friedrich J, Moran S, Bishop A, Wood C, Shin A. Free vascularized fubular graft salvage of complications of long-bone allograft after tumor reconstruction. J Bone Joint Surg Am. 2008;90:93-100.PubMedCrossRefGoogle Scholar
  51. 51.
    Gruber R, Koch H, Doll B, Tegtmeier F, Einhorn T, Hollinger J. Fracture healing in the elderly patient. Exp Gernotol. 2006;41:1080-1093.CrossRefGoogle Scholar
  52. 52.
    Khan Y, Yaszemski M, Mikos A, Laurencin C. Tissue engineering of bone: material and matrix considerations. J Bone Joint Surg Am. 2008;90:36-42.PubMedCrossRefGoogle Scholar
  53. 53.
    Lee K, Chan C, Patil N, Goodman S. Cell therapy for bone regeneration: bench to bedside. J Biomed Mater Res B Appl Biomater. 2009;89:252-263.PubMedGoogle Scholar
  54. 54.
    Mashimo T, Serikawa T. Rat resources in biomedical research. Curr Pharm Biotechnol. 2009;10:214-220.PubMedCrossRefGoogle Scholar
  55. 55.
    Whitfield J, Morley P, Willick G. Parathyroid hormone, its fragments and their analogs for the treatment of osteoporosis. Treat Endocrinol. 2002;1:175-190.PubMedCrossRefGoogle Scholar
  56. 56.
    Herbenick M, Sprott D, Still H, Lawless M. Effects of a cyclooxygenase 2 inhibitor on fracture healing in a rat model. Am J Orthop. 2008;37:133-137.Google Scholar
  57. 57.
    Miettinen S, Jaatinen J, Pelttari A, et al. Effect of locally administered zoledronic acid on injury-induced intramembranous bone regeneration and osseointegration of a titanium implant in rats. J Orthop Sci. 2009;14:431-436.PubMedCrossRefGoogle Scholar
  58. 58.
    Boerckel J, Dupont K, Kolambkar Y, Lin A, Guldberg R. In vivo model for evaluating the effects of mechanical stimulation on tissue-engineered bone repair. J Biomech Eng. 2009;131:084502:1-5.Google Scholar
  59. 59.
    Ma D, Guan J, Normandin F, et al. Multifunctional nano-architecture for biomedical applications. Chem Mater. 2006; 18:1920-1927.CrossRefGoogle Scholar
  60. 60.
    Dalby M, Gadegaard N, Tare R, et al. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater. 2007;6:997-1003.PubMedCrossRefGoogle Scholar
  61. 61.
    Ibasco S, Tamimi F, Meszaros R, et al. Magnesium-sputtered titanium for the formation of bioactive coatings. Acta Biomater. 2009;5:2338-2347.PubMedCrossRefGoogle Scholar
  62. 62.
    Harvey E, Henderson J, Vengallatore S. Nanotechnology and bone healing. J Ortho Trauma. 2010;24:S25-S30.CrossRefGoogle Scholar
  63. 63.
    Brown R, Wiseman M, Chuo C, Cheema U, Nazhat S. Ultrarapid engineering of biomimetic materials and tissues: fabrication of nano- and microstructures by plastic compression. Adv Funct Mater. 2005;15:1762-1770.CrossRefGoogle Scholar
  64. 64.
    Bitar M, Brown R, Salih V, Kidane A, Knowles J, Nazhat S. Effect of cell density on osteoblastic differentiation and matrix degradation of biomimetic dense collagen scaffolds. Biomacromolecules. 2008;9:129-135.PubMedCrossRefGoogle Scholar
  65. 65.
    Mudera V, Morgan M, Cheema U, Nazhat S, Brown R. Ultra-rapid engineered collagen constructs tested in an in vivo nursery site. J Tissue Eng Regen Med. 2007;1: ­192-198.PubMedCrossRefGoogle Scholar
  66. 66.
    Buxton P, Bitar M, Gellynck K, et al. Dense collagen matrix accelerates osteogenic differentiation and rescues the apoptotic response to MMP inhibition. Bone. 2008;43:377-385.PubMedCrossRefGoogle Scholar
  67. 67.
    Bonnarens F, Einhorn T. Production of a standard closed fracture in laboratory animal bone. J Orthop Res. 1984;2: 97-101.PubMedCrossRefGoogle Scholar
  68. 68.
    Palomares K, Gleason R, Mason Z, et al. Mechanical stimulation alters tissue differentiation and molecular expression during bone healing. J Orthop Res. 2009;27:1123-1132.PubMedCrossRefGoogle Scholar
  69. 69.
    Fu L, Tang T, Miao Y, Hao Y, Dai K. Effect of 1, 25-dihydroxy vitamin D3 on fracture healing and bone remodeling in ovariectomized rat femora. Bone. 2009;44:893-898.PubMedCrossRefGoogle Scholar
  70. 70.
    Karp J, Sarraf F, Shoichet M, Davies J. Fibrin-filled scaffolds for bone-tissue engineering: an in vivo study. J Biomed Mater Res A. 2004;71:162-171.PubMedCrossRefGoogle Scholar
  71. 71.
    Nagashima M, Sakai A, Uchida S, Tanaka S, Tanaka M, Nakamura T. Bisphosphonate (YM520) delays the repair of cortical bone defect after drill-hole injury by reducing terminal differentiation of osteoblasts in the mouse femur. Bone. 2005;36:502-511.PubMedCrossRefGoogle Scholar
  72. 72.
    Majd H, Wipff P, Buscemi L, et al. A novel method of dynamic culture surface expansion improvesmesenchymal stem cell proliferation and phenotype. Stem Cells. 2009; 27:200-209.PubMedCrossRefGoogle Scholar
  73. 73.
    Jabbarzadeh E, Starnes T, Khan Y, et al. Induction of angiogenesis in tissue-engineered scaffolds designed for bone repair: a combined gene therapy transplantation approach. Proc Natl Acad Sci USA. 2008;105:11099-11104.PubMedCrossRefGoogle Scholar
  74. 74.
    Rosa A, de Oliveira P, Beloti M. Macroporous scaffolds associated with cells to construct a hybrid biomaterial for bone tissue engineering. Expert Rev Med Devices. 2008; 5:719-728.PubMedCrossRefGoogle Scholar
  75. 75.
    LeNihouannen D, Komarova S, Gbureck U, Barralet J. Bioactivity of bone resorptive factor loaded on osteoconductive matrices: stability post-dehydration. Eur J Pharm Biopharm. 2008;70:813-818.CrossRefGoogle Scholar
  76. 76.
    Hacking S, Zuraw M, Harvey E, Tanzer M, Krygier J, Bobyn J. A physical vapor deposition method for controlled evaluation of biological response to biomaterial chemistry and topography. J Biomed Mater Res A. 2007;82:179-187.PubMedGoogle Scholar
  77. 77.
    Hacking SA, Tanzer M, Harvey EJ, Krygier JJ, Bobyn JD. Relative contributions of chemistry and topography to the osseointegration of hydroxyapatite coatings. Clin Orthop Relat Res. 2002;405:24-38.PubMedCrossRefGoogle Scholar
  78. 78.
    Hacking S, Harvey E, Roughly P, Tanzer M, Bobyn J. The response of mineralizing culture systems to microtextured and polished titanium surfaces. J Orthop Res. 2008;26: 1347-1354.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Janet E. Henderson
    • 1
  • Chan Gao
  • Edward J. Harvey
  1. 1.Department of Medicine and SurgeryMcGill University Health Centre, Montreal General HospitalMontrealCanada

Personalised recommendations