Other Large Animal Models

  • Susan Reinwald
  • David B. Burr


Osteoporosis is a disease characterized by low bone mass and micro-architectural deterioration of bone tissue leading to skeletal fragility. Guidelines established by the United States Food and Drug Administration (FDA) stipulate that therapeutic treatments formulated to attenuate or prevent postmenopausal osteoporosis should, in the first instance, be evaluated in an ovariectomized (OVX) rodent such as the rat.


Bone Mineral Density Bone Loss Large Animal Model Areal Bone Mineral Density Postmenopausal Bone Loss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Food and Drug Administration. Guidelines for preclinical and clinical evaluation agents used in the prevention or treatment of postmenopausal osteoporosis. In: Division of Metabolic and Endocrine Drug Products, ed. Rockville: Food and Drug Administration; 1994.Google Scholar
  2.  2.
    Wehrli FW, Ladinsky GA, Jones C, et al. In vivo magnetic resonance detects rapid remodeling changes in the topology of the trabecular bone network after menopause and the protective effect of estradiol. J Bone Miner Res. 2008;23:730-740.PubMedGoogle Scholar
  3.  3.
    Cohen AA. Female post-reproductive lifespan: a general mammalian trait. Biol Rev. 2004;79:733-750.PubMedGoogle Scholar
  4.  4.
    Reinwald S, Burr DB. Review of nonprimate, large animal models for osteoporosis research. J Bone Miner Res. 2008; 23:1353-1368.PubMedGoogle Scholar
  5.  5.
    Alexander C. Idiopathic osteoporosis: an evolutionary dys-adaptation? Ann Rheum Dis. 2001;60:554-558.PubMedGoogle Scholar
  6.  6.
    Shih MS, Dixon J, Anderson C. The effects of chronic dietary calcium supplementation on bone mineral density in ovariectomized beagles. Calcif Tissue Int. 1988;43:122-124.PubMedGoogle Scholar
  7.  7.
    Skoyles JR. Human balance, the evolution of bipedalism and dysequilibrium syndrome. Med Hypotheses. 2006;66: 1060-1068.PubMedGoogle Scholar
  8.  8.
    Aerssens J, Boonen S, Lowet G, Dequeker J. Interspecies differences in bone composition, density, and quality: potential implications for in vivo bone research. Endocrinology. 1998;139:663-670.PubMedGoogle Scholar
  9.  9.
    Gluer CC, Scholz-Ahrens KE, Helfenstein A, et al. Ibandronate treatment reverses glucocorticoid-induced loss of bone mineral density and strength in minipigs. Bone. 2007;40:645-655.PubMedGoogle Scholar
  10. 10.
    McLain RF, Yerby SA, Moseley TA. Comparative morphometry of L4 vertebrae. Spine. 2002;27:E200-E206.PubMedGoogle Scholar
  11. 11.
    Shen V, Dempster DW, Birchman R, et al. Lack of changes in histomorphometric, bone mass, and biomechanical parameters in ovariohysterectomized dogs. Bone. 1992;13:311-316.PubMedGoogle Scholar
  12. 12.
    Dannucci G, Martin RB, Patterson-Buckendahl P. Ovariec­tomy and trabecular bone remodeling in the dog. Calcif Tissue Int. 1987;40:194-199.PubMedGoogle Scholar
  13. 13.
    Nakamura T, Nagai Y, Yamato H, Suzuki K, Orimo H. Regulation of bone turnover and prevention of bone atrophy in ovariectomized beagle dogs by the administration of 24R,25(OH)2D3. Calcif Tissue Int. 1992;50:221-227.PubMedGoogle Scholar
  14. 14.
    Faugere M-C, Friedler RM, Fanti P, Malluche HH. Bone changes occurring early after cessation of ovarian function in beagle dogs: a histomorphometric study employing sequen­tial biopsies. J Bone Miner Res. 1990;5:263-272.PubMedGoogle Scholar
  15. 15.
    Monier-Faugere M-C, Friedler PM, Bauss F, Malluche HH. A new bisphosphonate, BM 21.0955, prevents bone loss associated with cessation of ovarian function in experimental dogs. J Bone Miner Res. 1993;8:1345-1355.PubMedGoogle Scholar
  16. 16.
    Monier-Faugere M-C, Geng Z, Qi Q, Arnala I, Malluche HH. Calcitonin prevents bone loss but decreases osteoblastic activity in ovariohysterectomized beagle dogs. J Bone Miner Res. 1996;11:446-453.PubMedGoogle Scholar
  17. 17.
    Malluche HH, Faugere MC, Rush M, Friedler R. Osteoblastic insufficiency is responsible for maintenance of osteopenia after loss of ovarian function in experimental beagle dogs. Endocrinology. 1986;119:2649-2654.PubMedGoogle Scholar
  18. 18.
    Boyce RW, Franks AF, Jankowsky ML, et al. Sequential histomorphometric changes in cancellous bone from ovariohysterectomized dogs. J Bone Miner Res. 1990;5:947-953.PubMedGoogle Scholar
  19. 19.
    Newton BI, Cooper RC, Gilbert JA, Johnson RB, Zardiackas LD. The ovariectomized sheep as a model for human bone loss. J Comp Pathol. 2004;130:323-326.PubMedGoogle Scholar
  20. 20.
    Sigrist HM, Gerhardt C, Alini M, Schneider E, Egermann M. The long-term effects of ovariectomy on bone metabolism in sheep. J Bone Miner Metab. 2007;25(1):28-35.PubMedGoogle Scholar
  21. 21.
    Pogoda P, Egermann M, Schnell JC, et al. Leptin inhibits bone formation not only in rodents but also in sheep. J Bone Miner Res. 2006;21:1591-1599.PubMedGoogle Scholar
  22. 22.
    Frost HM. The regional acceleratory phenomenon. Henry Ford Hosp Med J. 1983;31:3-9.PubMedGoogle Scholar
  23. 23.
    Heaney RP. Bone health. Am J Clin Nutr. 2007;85(1): 300S-303S.PubMedGoogle Scholar
  24. 24.
    Slauterbeck J, Clevenger C, Lundberg W, Burchfield DM. Estrogen level alters the failure load of the rabbit anterior cruciate ligament. J Orthop Res. 1999;17:405-408.PubMedGoogle Scholar
  25. 25.
    Castañeda S, Calvo E, Largo R, et al. Characterization of a new experimental model of osteoporosis in rabbits. J Bone Miner Metab. 2008;26(1):53-59.PubMedGoogle Scholar
  26. 26.
    Mori H, Manabe M, Kurachi Y, Nagumo M. Osseointegration of dental implants in rabbit bone with low mineral density. J Oral Maxillofac Surg. 1997;55:351-361.PubMedGoogle Scholar
  27. 27.
    Castañeda S, Largo R, Calvo E, et al. Bone mineral measurements of subcholndral and trabecular bone in healthy and osteoporotic rabbits. Skeletal Radiol. 2006;35:34-41.PubMedGoogle Scholar
  28. 28.
    Adaikan PG, Srilatha B, Wheat AJ. Efficacy of red clover isoflavones in the menopausal rabbit model. Fertil Steril. 2009;92(6):2008-2013.PubMedGoogle Scholar
  29. 29.
    Saito M, Marumo K, Soshi S, Kida Y, Ushiku C, Shinohara A. Raloxifene ameliorates detrimental enzymatic and nonenzymatic collagen cross-links and bone strength in rabbits with hyperhomocysteinemia. Osteoporos Int. 2010;21(4):655-666.PubMedGoogle Scholar
  30. 30.
    Eckermann-Ross C. Hormonal regulation and calcium metabolism in the rabbit. Vet Clin North Am Exot Anim Pract. 2008;11(1):139-152.PubMedGoogle Scholar
  31. 31.
    Committee on Animal Nutrition, National Research Council (U.S.). Nutrient Requirements for Rabbits. 2nd revised edition. Washington, DC: National Academies Press; 1977.Google Scholar
  32. 32.
    Stoker NG, Epker BN. Age changes in endosteal bone remodeling and balance in the rabbit. J Dent Res. 1970; 50:1570-1574.Google Scholar
  33. 33.
    Martiniaková M, Omelka R, Grosskopf B, Sirotkin A, Chrenek P. Sex-related variation in compact bone microstructure of the femoral diaphysis in juvenile rabbits. Acta Vet Scand. 2008;50(1):15.PubMedGoogle Scholar
  34. 34.
    Martiniaková M, Omelka R, Chrenek P, Vondráková M, Buauerová M. Age-related changes in histological structure of the femur in juvenile and adult rabbits. Bull Vet Inst Pulawy. 2005;49:227-230.Google Scholar
  35. 35.
    Martiniaková M, Vondráková M, Fabiš M. Investigation of the microscopic structure of rabbit compact bone tissue. Scripta Med (BRNO). 2003;76:215-220.Google Scholar
  36. 36.
    Martiniaková M, Omelka R, Ryban L, et al. Comparative study of compact bone tissue microstructure between non-transgenic and transgenic rabbits with WAP-hFVIII gene construct. Anat Histol Embryol. 2006;35(5):310-315.PubMedGoogle Scholar
  37. 37.
    Mashiba T, Burr DB, Turner CH, Sato M, Cain RL, Hock JM. Effects of human parathyroid hormone (1–34), LY333334, on bone mass, remodeling, and material properties of cortical bone during the first remodeling cycle in rabbits. Bone. 2001;28:538-547.PubMedGoogle Scholar
  38. 38.
    Pearce AI, Richards RG, Milz S, Schneider E, Pearce SG. Animal models from implant biomaterial research in bone: a review. Eur Cell Mater. 2007;13:1-10.PubMedGoogle Scholar
  39. 39.
    Martin RK, Albright JP, Jee WSS, Taylor GN, Clarke WR. Bone loss in the beagle tibia: influence of age, weight, and sex. Calcif Tissue Int. 1981;33:233-238.PubMedGoogle Scholar
  40. 40.
    Boyce RW, Paddock CL, Gleason JR, Sletsema WK, Eriksen EF. The effects of risedronate on canine cancellous bone remodeling: three-dimensional kinetic reconstruction of the remodeling site. J Bone Miner Res. 1995;10:211-221.PubMedGoogle Scholar
  41. 41.
    Kimmel DB, Moran EL, Bogoch ER. Animal models of osteopenia or osteoporosis. In: Yuehuei HA, Friedman RJ, eds. Animal Models in Orthopaedic Research. Boca Raton: CRC; 1999:280-305.Google Scholar
  42. 42.
    Kimmel DB, Jee WSSS. A quantitative histologic study of bone turnover in young adult beagles. Anat Rec. 1982;203:31-45.PubMedGoogle Scholar
  43. 43.
    Kimmel DB. The oophorectomized beagle as an experimental model for estrogen-deplete bone loss in the adult human. Eur Cell Mater. 1991;suppl 1:75-84.Google Scholar
  44. 44.
    Wilson AK, Bhattacharyya MH, Miller S, Mani A, Sacco-Gibson N. Ovariectomy-induced changes in aged beagles: histomorphometry of rib cortical bone. Calcif Tissue Int. 1998;62:237-243.PubMedGoogle Scholar
  45. 45.
    Martin RB, Butcher RL, Sherwood LL, et al. Effects of ovariectomy in beagle dogs. Bone. 1987;8:23-31.PubMedGoogle Scholar
  46. 46.
    Motoie H, Kanoh H, Ogata S, Kawamuki K, Shikama H, Fujikura T. Prevention of bone loss by bisphosphonate YM175 in ovariectomized dogs with dietary calcium restriction. Jpn J Pharmacol. 1996;71(3):239-246.PubMedGoogle Scholar
  47. 47.
    Martin RB, Chow BD, Lucas PA. Bone marrow fat content in relation to bone remodeling and serum chemistry in intact and ovariectomized dogs. Calcif Tissue Int. 1990;46:189-194.PubMedGoogle Scholar
  48. 48.
    Monier-Faugere M-C, Geng Z, Paschalis E, et al. Intermittent and continuous administration of the bisphosphonate ibandronate in ovariohysterectomized beagle dogs: effects on bone morphometry and mineral properties. J Bone Miner Res. 1999;14:1768-1778.PubMedGoogle Scholar
  49. 49.
    Yoshida Y, Moriya A, Kitamura K, et al. Responses of trabecular and cortical bone turnover and bone mass and strength to bisphosphonates YH529 in ovariectomized beagles with calcium restriction. J Bone Miner Res. 1998;13(6):1011-1022.PubMedGoogle Scholar
  50. 50.
    Snow GR, Cook MA, Anderson C. Oophorectomy and cortical bone remodeling in the beagle. Calcif Tissue Int. 1984;36:586-590.PubMedGoogle Scholar
  51. 51.
    Nagai S, Shindo H. Mechanical strength of bone in canine osteoporosis model: relationship between bone mineral content and bone fragility. J Orthop Sci. 1997;2(6):428-433.Google Scholar
  52. 52.
    Ekici H, Sontas BH, Toydemir TSF, Senmevsim O, Kabasakal L, Imre Y. The effect of prepubertal ovariohysterectomy on spine mineral density and mineral content of puppies: a preliminary study. Res Vet Sci. 2007;82:105-109.PubMedGoogle Scholar
  53. 53.
    Cook SD, Skinner HB, Haddad RJ. A quantitative histologic study of osteoporosis produced by nutritional secondary hyperparathyroidism in dogs. Clin Orthop Relat Res. 1982; 175:105-120.Google Scholar
  54. 54.
    Karambolova KK, Snow GR, Anderson C. Effects of continuous 17β-estradiol administration on the periosteal and corticoendosteal envelope activity in spayed beagles. Calcif Tissue Int. 1987;40:12-15.PubMedGoogle Scholar
  55. 55.
    Anderson C. Bone remodeling rates of the beagle: a comparison between different sites on the same rib. Am J Vet Res. 1978;39:1763-1765.PubMedGoogle Scholar
  56. 56.
    Van Goethem B, Schaefers-Okkens A, Kirpensteijn J. Making a rational choice between ovariectomy and ovariohysterectomy in the dog: a discussion of the benefits of either technique. Vet Surg. 2006;35:136-143.PubMedGoogle Scholar
  57. 57.
    Snow GR, Anderson C. The effects of continuous progestogen treatment on cortical bone remodeling activity in beagles. Calcif Tissue Int. 1985;37(3):282-286.PubMedGoogle Scholar
  58. 58.
    Cerundolo R, Court MH, Hao Q, Michel KE. Identification and concentration of soy phytoestrogens in commercial dog foods. Am J Vet Res. 2004;65(5):592-596.PubMedGoogle Scholar
  59. 59.
    Brown NM, Setchell KDR. Animal models impacted by phytoestrogens in commercial chow: implications for pathways influenced by hormones. Lab Invest. 2001;81:735-747.PubMedGoogle Scholar
  60. 60.
    Reinwald S, Weaver CM. Soy isoflavones and bone health: a double-edged sword? J Nat Prod. 2006;69:450-459.PubMedGoogle Scholar
  61. 61.
    Gershoff SN, Legg MA, Hegsted DM. Adaptation to different calcium intakes in dogs. J Nutr. 1958;64(2):303-312.PubMedGoogle Scholar
  62. 62.
    Subcommittee on Dog Nutrition, Committee on Animal Nutrition, Board on Agriculture, National Research Council. Nutrient requirements and signs of deficiency. In: Nutrient Requirements of Dogs Revised 1985. Washington, DC: National Academy Press; 1985.Google Scholar
  63. 63.
    Motoie H, Nakamura T, O’uchi N, Nishikawa H, Kanoh H, Kawashima H. Effects of bisphosphonate YM175 on bone mineral density, strength, structure, and turnover in ovariectomized beagles on concommitant dietary calcium restriction. J Bone Miner Res. 1995;10(6):910-920.PubMedGoogle Scholar
  64. 64.
    Ismail AA, Silman AJ, Reeve J, Kaptope S, O’Neill TW. Rib fractures predict incident limb fractures: results from the European prospective osteoporosis study. Osteoporos Int. 2006;17:41-45.PubMedGoogle Scholar
  65. 65.
    Kim J, Breur GJ. Temporospatial and kinetic characteristics of sheep walking on a pressure sensing walkway. Can J Vet Res. 2008;72:50-55.PubMedGoogle Scholar
  66. 66.
    Yamaura M, Nakamura T, Nagai Y, Yoshihara A, Suzuki K. Reduced mechanical competence of bone by ovariectomy and its preservation with 24R, 25-dihydroxyvitamin D3 administration in beagles. Calcif Tissue Int. 1993;52:49-56.PubMedGoogle Scholar
  67. 67.
    Bradshaw JWS. The evolutionary basis for the feeding behavior of domestic dogs (Canis familiaris) and cats (Felis catus). J Nutr. 2006;136(suppl 7):1927S-1931S.PubMedGoogle Scholar
  68. 68.
    Lehmann H. The minipig in general toxicology. Scand J Lab Anim. 1998;25:59-62.Google Scholar
  69. 69.
    Acke E, Mooney CT, Jones BR. Oestrogen toxicity in a dog. Ir Vet J. 2003;56:465-468.Google Scholar
  70. 70.
    Zayed I, van Esch E, McConnel RF. Systemic and histopathologic changes in beagle dogs after chronic daily oral administration of synthetic (ethinyl estradiol) or natural (estradiol) estrogens, with special reference to the kidney and thyroid. Toxicol Pathol. 1998;26:730-741.PubMedGoogle Scholar
  71. 71.
    Dunayer E, Volmer PA. Ibuprofen toxicosis in dogs, cats, and ferrets. Vet Med. 2004;99:580-586.Google Scholar
  72. 72.
    Villar D, Buck WB, Gonzalez JM. Ibuprofen, aspirin and acetaminophen toxicosis and treatment in dogs and cats. Vet Hum Toxicol. 1998;40:156-162.PubMedGoogle Scholar
  73. 73.
    Chung J-Y, Choi J-H, Hwang C-Y, Youn H-Y. Pyridoxine induced neuropathy by subcutaneous administration in dogs. J Vet Sci. 2008;9:127-131.PubMedGoogle Scholar
  74. 74.
    Baroni E, Camisa B, D’Ambrosio D. Inter-species differences in sensitivity to the calcemic activity of the novel 1,25-dihydroxyvitamin D3 analog BXL746. Regul Toxicol Pharmacol. 2008;52:332-341.PubMedGoogle Scholar
  75. 75.
    Malluche HH, Faugere MC, Friedler RM, Fanti P. 1,25-dihydroxyvitamin D3 corrects bone loss but suppresses bone remodeling in ovariohysterectomized beagle dogs. Endo­crinology. 1988;122:1998-2006.PubMedGoogle Scholar
  76. 76.
    Johnson RB, Gilbert JA, Cooper RC, et al. Effect of estrogen deficiency on skeletal and alveolar bone density in sheep. J Periodontol. 2002;73:383-391.PubMedGoogle Scholar
  77. 77.
    Egermann M, Goldhahn J, Holz R, Schneider E, Lill CA. A sheep model for fracture treatment in osteoporosis: benefits of the model versus animal welfare. Lab Anim. 2008;42:453-464.PubMedGoogle Scholar
  78. 78.
    Arens D, Sigrist I, Alini M, Schawalder P, Schneider E, Egermann M. Seasonal changes in bone metabolism in sheep. Vet J. 2007;174:585-591.PubMedGoogle Scholar
  79. 79.
    Turner SA. Seasonal changes in bone metabolism in sheep: further characterization of an animal model for human osteoporosis. Vet J. 2007;174:460-461.PubMedGoogle Scholar
  80. 80.
    Hornby SB, Ford SL, Mase CA, Evans GP. Skeletal changes in the ovariectomized ewe and subsequent res­ponse to treatment with 17β oestradiol. Bone. 1995;17:389S-394S.PubMedGoogle Scholar
  81. 81.
    Lans C, Khan TE, Curran MM, McCorkle CM. Plant chemistry in veterinary medicine: medicinal constituents and their mechanisms of action. In: Wynn SG, Fougere B, eds. Veterinary Herbal Medicine. USA: Elsevier Health Sciences; Mosby, Inc. St. Louis, Missouri, 2007:159-182.Google Scholar
  82. 82.
    Croker K, Nichols P, Barbetti M, Adams N. Sheep infertility from pasture legumes. In: Department of Agriculture Farmnote; 2005
  83. 83.
    Chavassieux P, Garnero P, Duboeuf F, et al. Effects of a new selective estrogen receptor modulator (MDL 103,323) on cancellous and cortical bone in ovariectomized ewes: a biochemical, histomorphometric, and densitometric study. J Bone Miner Res. 2001;16:89-96.PubMedGoogle Scholar
  84. 84.
    Fabre-Nys C, Gelez H. Sexual behavior in ewes and other domestic ruminants. Horm Behav. 2007;52:18-25.PubMedGoogle Scholar
  85. 85.
    Wilkinson JM. Silage and animal health. Nat Toxins. 1999; 7:221-232.PubMedGoogle Scholar
  86. 86.
    Page S, Hennessy D. Pharmacology and therapeutics. In: Aitken ID, ed. Diseases of Sheep. 4th ed. Oxford: Blackwell; 2007:544-572.Google Scholar
  87. 87.
    Radostits OM, Gay CC, Blood DC, Arundel JH, Hinchcliff KW. Practical usage of antimicrobial drugs. In: Veterinary Medicine. 9th ed. Philadelphia: W.B. Saunders; 2000:159.Google Scholar
  88. 88.
    Martini L, Fini M, Giavaresi G, Giardino R. Sheep model in orthopaedic research: a literature review. Comp Med. 2001; 51:292-299.PubMedGoogle Scholar
  89. 89.
    Martin RB, Burr, DB, Sharkey NA. Skeletal Tissue Mechanics. New York: Springer; 1998.Google Scholar
  90. 90.
    Turner AS. The sheep as a model for osteoporosis in humans. Vet J. 2002;163:232-239.PubMedGoogle Scholar
  91. 91.
    Hillier ML, Bell LS. Differentiating human bone from animal bone: a review of histological methods. J Forensic Sci. 2006;52:249-263.Google Scholar
  92. 92.
    Kennedy OD, Brennan O, Rackard SM, et al. Effects of ovariectomy on bone turnover, porosity, and biomechanical properties in ovine compact bone 12 months postsurgery. J Orthop Res. 2009;27:303-309.PubMedGoogle Scholar
  93. 93.
    Rocca M, Fini M, Giavaresi G, Aldini NN, Giardino R. Osteointegration of hydroxyapatite-coated and uncoated titanium screws in long-term ovariectomized sheep. Biomaterials. 2002;23:1017-1023.PubMedGoogle Scholar
  94. 94.
    Turner AS, Alvis M, Myers W, Stevens ML, Lundy MW. Changes in bone mineral density and bone-specific alkaline phosphate in ovariectomized ewes. Bone. 1995;17: 395S-402S.PubMedGoogle Scholar
  95.  95.
    Wu Z-X, Lei W, Hu Y-Y, et al. Effect of ovariectomy on BMD, micro-architecture and biomechanics of cortical and cancellous bones in a sheep model. Med Eng Phys. 2008;30:1112-1118.PubMedGoogle Scholar
  96.  96.
    Giavaresi G, Fini M, Torricelli P, Giardino R. The ovariectomized ewe model in the evaluation of biomaterials for prosthetic devices in spinal fixation. Int J Artif Organs. 2001;24:814-820.PubMedGoogle Scholar
  97.  97.
    Goldhahn J, Jenet A, Schneider E, Techn D, Christoph AL. Slow rebound of cancellous bone after mainly steroid-induced osteoporosis in ovariectomized sheep. J Orthop Trauma. 2005;19:23-28.PubMedGoogle Scholar
  98.  98.
    Lill CA, Fluegel AK, Schneider E. Effect of ovariectomy, malnutrition and glucocorticoid application on bone properties in sheep: a pilot study. Osteoporos Int. 2002;13:480-486.PubMedGoogle Scholar
  99.  99.
    MacLeay JM, Olson JD, Turner AS. Effect of dietary-induced metabloic acidosis and ovariectomy on bone mineral density and markers of bone turnover. J Bone Miner Metab. 2004;22:561-568.PubMedGoogle Scholar
  100. 100.
    Fulton LK, Clarke MS, Farris HE. The goat as a research model for biomedical research and teaching. ILAR J. 1994;36(2):21-29.Google Scholar
  101. 101.
    Morand-Fehr P, Lebbie SHB. Proposals for improving the research efficiency in goats. Small Rumin Res. 2004;51:145-153.Google Scholar
  102. 102.
    Li L, Chen H, Wu W, Chen M, Weng L, Zheng H. Bio-mechanical property changes of long bone in ovariectomized goats. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi = Journal of Biomedical Engineering Perhaps it can be abbreviated to: J Biomed Eng. 1998;15:101-115.PubMedGoogle Scholar
  103. 103.
    Li L, Wu W, Chen H, Tan J, Zheng H, Weng L. Bone histomorphometric changes in ovariectomized goat at different time courses. Hua xi yi ke da xue xue bao = Journal of West China University of Medical Sciences. Perhaps it can be abbreviated to: J West China Uni Med Sci. Acronym = WCUMS. 1997;28:398-400.PubMedGoogle Scholar
  104. 104.
    He C, Chen H, Li L, Chen M, Chen Y, Wu W. Changes of biomedical properties in goats at different times after ovariectomy. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi = Journal of Biomedical Engineering Perhaps it can be abbreviated to: J Biomed Eng. 1999;16:295-299.PubMedGoogle Scholar
  105. 105.
    He Y, Sun XC, Chen HQ, Weng LL, Zheng H, Qui MC. Bone histomorphometry study on lumbar vertebrae microstructure of ovariectomized goats. Zhonghua Fu Chan Ke Za Zhi. 2003;38:405-408.PubMedGoogle Scholar
  106. 106.
    Yonezawa T, Mogi K, Li JY, Sako R, Yamanouchi K, Nishihara M. Modulation of growth hormone pulsatility by sex steroids in female goats. Endocrinology. 2005;146:2736-2743.PubMedGoogle Scholar
  107. 107.
    Leung KS, Siu WS, Cheung NM, et al. Goats as an osteopenic animal model. J Bone Miner Res. 2001;16:2348-2355.PubMedGoogle Scholar
  108. 108.
    Siu WS, Qin L, Cheung WH, Leung KS. A study of trabecular bones in ovariectomized goats with micro-computed tomography and peripheral quantitative computed tomography. Bone. 2004;35:21-26.PubMedGoogle Scholar
  109. 109.
    Tam KF, Cheung WH, Lee KM, Qin L, Leung KS. Shockwave exerts osteogenic effect on osteoporotic bone in an ovariectomized goat model. Ultrasound Med Biol. 2009;35:1109-1118.PubMedGoogle Scholar
  110. 110.
    Li Z, Lu WW, Chiu PKY, et al. Strontium-calcium coadministration stimulates bone matrix osteogenic factor expression and new bone formation in a large animal model. J Orthop Res. 2008;27:758-762.Google Scholar
  111. 111.
    Leung KS, Siu WS, Li SF, et al. An in vitro optimized injectable calcium phosphate cement for augmenting screw fixation in osteopenic goats. J Biomed Mater Res B Appl Biomater. 2005;78B:153-160.Google Scholar
  112. 112.
    Qin L, Mak ATF, Cheng CW, Hung LK, Chan KM. Histomorphological study on pattern of fluid movement in cortical bone in goats. Anat Rec. 1999;255:380-387.PubMedGoogle Scholar
  113. 113.
    Almond GW. Research applications using pigs. Vet Clin North Am Food Anim Pract. 1996;12:707-716.PubMedGoogle Scholar
  114. 114.
    Smith AC, Swindle MM. Preparation of swine for the laboratory. ILAR J. 2006;47:358-363.PubMedGoogle Scholar
  115. 115.
    Laber KE, Whary MT, Bingel SA, Goodrich JA, Smith AC, Swindle MM. Biology and diseases in swine. In: Fox JG, Anderson LC, Loew FM, Quimby FW, eds. Laboratory Animal Medicine. 2nd ed. San Diego: Academic; 2002:615-673.Google Scholar
  116. 116.
    Kattelmann L, Epperson W, Chase C. Swine veterinarians and hearing loss: summary of results of audiology testing at the 2002 AASV annual meeting. J Swine Health Prod. 2005;13:34-37.Google Scholar
  117. 117.
    Estrada JL, Collins B, York A, et al. Successful cloning of the Yucatan minipig using commercial/occidental breeds as oocyte donors and embryo recipients. Cloning Stem Cells. 2008;10:287-297.PubMedGoogle Scholar
  118. 118.
    Dehoux JP, Gianello P. The importance of large animal models in transplantation. Front Biosci. 2007;12:4864-4880.PubMedGoogle Scholar
  119. 119.
    Kohn F, Sharifi AR, Malovrh S, Simianer H. Estimation of genetic parameters for body weight of the Goettingen minipig with random regression models. J Anim Sci. 2007;85:2423-2428.PubMedGoogle Scholar
  120. 120.
    Kohn F, Sharifi AR, Simianer H. Modeling the growth of the Göettingen minipig. J Anim Sci. 2007;85:84-92.PubMedGoogle Scholar
  121. 121.
    Muehleman AC, Li AJ, Abe AY, et al. Effect of risedronate in a minipig cartilage defect model with allograft. J Orthop Res. 2009;27:360-365.PubMedGoogle Scholar
  122. 122.
    Mosekilde L, Weisbrode SE, Safron JA, et al. Evaluation of the skeletal effects of combined mild dietary calcium restriction and ovariectomy in Sinclair S-1 minipigs: a pilot study. J Bone Miner Res. 1993;8:1311-1321.PubMedGoogle Scholar
  123. 123.
    Howard PK, Chakraborty PK, Camp JC, Stuart LD, Wildt DE. Pituitary-ovarian relationships during the estrous cycle and the influence of parity in an inbred strain of miniature swine. J Anim Sci. 1983;57:1517-1524.PubMedGoogle Scholar
  124. 124.
    Keaney JFJ, Shwaery GT, Xu A, et al. Lipids:17 beta-­estradiol preserves endothelial vasodilator function and limits low-density lipoprotein oxidation in hypercholesterolemic swine. Circulation. 1994;85:2251-2259.Google Scholar
  125. 125.
    Martiniakova M, Grosskopf B, Omelka R, Vondrakova M. Differences among species in compact bone tissue microstructure of mammalian skeleton: use of a discriminant function analysis for species identification. J Forensic Sci. 2006;51:1235-1239.PubMedGoogle Scholar
  126. 126.
    Larsen MO, Rolin B. Use of the Göttingen minipig as a model of diabetes with special focus on type 1 diabetes research. ILAR J. 2004;45:303-313.PubMedGoogle Scholar
  127. 127.
    Martínez-González JM, Cano-Sánchez J, Campo-Trapero J, Gonzalo-Lafuente JC, Díaz-Reganon J, Vázquez-Pineiro MT. Evaluation of minipigs as an animal model for alveolar distraction. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005;99:11-16.PubMedGoogle Scholar
  128. 128.
    Boyce RW, Ebert DC, Youngs TA, et al. Unbiased estimation of vertebral trabecular connectivity in calcium-restricted ovariectomized minipigs. Bone. 1995;16:637-642.PubMedGoogle Scholar
  129. 129.
    Borah B, Dufresne TE, Chmielewski PA, Gross GJ, Prenger MC, Phipps RJ. Risedronate preserves trabecular architecture and increases bone strength in vertebra of ovariectomized minipigs as measured by three-dimensional microcomputed tomography. J Bone Miner Res. 2002; 17:1139-1147.PubMedGoogle Scholar
  130. 130.
    Mackie RI, Koike S, Krapac I, Chee-Sanford J, Maxwell S, Aminov RI. Tetracycline residues and tetracycline resistance genes in groundwater impacted by swine production facilities. Anim Biotechnol. 2006;17:157-176.PubMedGoogle Scholar
  131. 131.
    Baumans V. Use of animals in experimental research: an ethical dilemma? Gene Ther. 2004;11:S64-S66.PubMedGoogle Scholar
  132. 132.
    Roberts RM, Smith GW, Bazer FW, et al. Farm animal research in crisis. Science. 2009;324:468-469.PubMedGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Department of Anatomy and Cell BiologyIndiana University School of MedicineIndianapolisUSA

Personalised recommendations