Nonhuman Primate Models of Osteoporosis

  • Susan Y. Smith
  • Aurore Varela
  • Jacquelin Jolette


This chapter reviews the use of the nonhuman primate (NHP) as an animal model for osteoporosis research. While the previous chapters have extensively covered the use of lower species, the use of a higher species such as the NHP is likely to be the ultimate, or in some cases, the only relevant species to study bone in osteoporosis research. NHPs are used extensively in osteoporosis research in the pharmaceutical industry to evaluate new drug targets and in this context have contributed much to our current understanding of the human disease. This chapter focuses on the use of the NHP in drug development, presenting practical information on model selection and current techniques used to derive the primary end points of interest. Most of the practices described are considered relevant even in a basic research laboratory setting and will hopefully prove useful to researchers outside the pharmaceutical industry.


Bone Mineral Density Bone Turnover Bone Mineral Content Bone Quality Bone Densitometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to thank the technical teams in the Imaging, Histomorphometry, Biomechanics, and Immunochemistry laboratories at Charles River that made this work possible, and to Dr Luc Chouinard and Nancy Doyle for critical review of the manuscript.


  1.  1.
    Reinwald S, Burr D. Review of nonprimate, large animal models for osteoporosis research. J Bone Miner Res. 2008; 23(9):1353-1368.PubMedCrossRefGoogle Scholar
  2.  2.
    Brommage R. Perspectives on using nonhuman primates to understand the etiology and treatment of postmenopausal osteoporosis. J Musculoskelet Neuronal Interact. 2001;1(4): 307-325.PubMedGoogle Scholar
  3.  3.
    Ominsky M, Vlasseros F, Jolette J, et al. Two doses of sclerostin antibody in cynomolgus monkeys increases bone formation, bone mineral density, and bone strength. J Bone Miner Res. 2010,25(5):948-959 (E-Pub January 8, 2010).CrossRefGoogle Scholar
  4.  4.
    Smith SY, Recker RR, Hannan M, et al. Intermittent intravenous administration of the bisphosphonate ibandronate prevents bone loss and maintains bone strength and quality in ovariectomized cynomolgus monkeys. Bone. 2003;32(1):45-55.PubMedCrossRefGoogle Scholar
  5.  5.
    Smith BB, Cosenza ME, Mancini A, et al. A toxicity profile of osteoprotegerin in the cynomolgus monkey. Int J Toxicol. 2003;22(5):403-412.PubMedGoogle Scholar
  6.  6.
    Stroup GB, Hoffman SJ, Vasko-Moser JA, et al. Changes in bone turnover following gonadotropin-releasing hormone (GnRH) agonist administration and estrogen treatment in cynomolgus monkeys: a short-term model for evaluation of antiresorptive therapy. Bone. 2001;28:532-537.PubMedCrossRefGoogle Scholar
  7.  7.
    FDA. Guidelines for preclinical and clinical evaluation of agents used in the prevention or treatment of postmenopausal osteoporosis. In: Products DoMaED, ed. Rockville: Food and Drug Administration; 1994.Google Scholar
  8.  8.
    CHMP. Guideline on the Evaluation of Medicinal Products in the Treatment of Primary Osteoporosis. London: European Medicines Agency; 2006.Google Scholar
  9.  9.
    JMHW. Guideline concerning the clinical evaluation method for Anti-Osteoporosis agents, pharmaceutical examination No. 742. In: Management BoH, ed.: issued by the Prefecural Bureau Chief, Bureau of Health Management, Section of Examination and Control, Bureau of Drug Safety, Japanese Ministry of Health and Welfare, 1999.Google Scholar
  10. 10.
    Jayo M, Jerome C, Lees C, et al. Bone mass in female cynomolgus macaques: a cross-sectional and longitudinal study by age. Calcif Tissue Int. 1994;54(3):231-236.PubMedCrossRefGoogle Scholar
  11. 11.
    Champ J, Binkley N, Havighurst T, et al. The effect of advancing age on bone mineral content of female rhesus monkeys. Bone. 1996;19(5):485-492.PubMedCrossRefGoogle Scholar
  12. 12.
    Smith SY, Varela A. Effect of diet (phytoestrogens) on the ovariectomy response in the cynomolgus monkey model of osteoporosis. J Bone Miner Res 2009; 24 (Suppl 1), SU0404.Google Scholar
  13. 13.
    Balena R, Toolan B, Shea M, et al. The effects of 2-year treatment with the aminobisphosphonate alendronate on bone metabolism, bone histomorphometry, and bone strength in ovariectomized nonhuman primates. J Clin Invest. 1993; 92(6):2577-2586.PubMedCrossRefGoogle Scholar
  14. 14.
    Jerome C, Turner C, Lees C. Decreased bone mass and strength in ovariectomized cynomolgus monkeys (Macaca fascicularis). Calcif Tissue Int. 1997;60(3):265-270.PubMedCrossRefGoogle Scholar
  15. 15.
    Jerome C. Primate models of osteoporosis. Lab Anim Sci. 1998;48(6):618-622.PubMedGoogle Scholar
  16. 16.
    Binkley N, Kimmel D, Bruner J, et al. Zoledronate prevents the development of absolute osteopenia following ovariectomy in adult rhesus monkeys. J Bone Miner Res. 1998; 13(11):1775-1782.PubMedCrossRefGoogle Scholar
  17. 17.
    Brommage R, Hotchkiss C, Lees C, et al. Daily treatment with human recombinant parathyroid hormone-(1-34), LY333334, for 1 year increases bone mass in ovariectomized monkeys. J Clin Endocrinol Metab. 1999;84(10):3757-3763.PubMedCrossRefGoogle Scholar
  18. 18.
    Burr D, Hirano T, Turner C, et al. Intermittently administered human parathyroid hormone(1-34) treatment increases intracortical bone turnover and porosity without reducing bone strength in the humerus of ovariectomized cynomolgus monkeys. J Bone Miner Res. 2001;16(1):157-165.PubMedCrossRefGoogle Scholar
  19. 19.
    Jerome C, Peterson P. Nonhuman primate models in skeletal research. Bone. 2001;29(1):1-6.PubMedCrossRefGoogle Scholar
  20. 20.
    Hotchkiss C, Stavisky R, Nowak J, et al. Levormeloxifene prevents increased bone turnover and vertebral bone loss following ovariectomy in cynomolgus monkeys. Bone. 2001; 29(1):7-15.PubMedCrossRefGoogle Scholar
  21. 21.
    Lees C, Register T, Turner C, et al. Effects of raloxifene on bone density, biomarkers, and histomorphometric and biomechanical measures in ovariectomized cynomolgus monkeys. Menopause. 2002;9(5):320-328.PubMedCrossRefGoogle Scholar
  22. 22.
    Smith SY, Jolette J, Turner CH. Skeletal health: primate model of postmenopausal. Am J Primatol. 2009;71:1-14.Google Scholar
  23. 23.
    Fox J, Miller MA, Newman MK, et al. Treatment of skeletally mature ovariectomized rhesus monkeys with PTH(1-84) for 16 months increases bone formation and density and improves trabecular architecture and biomechanical properties at the lumbar spine. J Bone Miner Res. 2007;22(2):260-273.PubMedCrossRefGoogle Scholar
  24. 24.
    Russo CR, Lauretani F, Bandinelli S, et al. Aging bone in men and women: beyond changes in bone mineral density. Osteoporos Int. 2003;14(7):531-538.PubMedCrossRefGoogle Scholar
  25. 25.
    Hotchkiss C. Use of peripheral quantitative computed tomography for densitometry of the femoral neck and spine in cynomolgus monkeys (Macaca fascicularis). Bone. 1999;24:101-107.PubMedCrossRefGoogle Scholar
  26. 26.
    Dickerson S, Hotchkiss C. Relationships between densitometric and morphological parameters as measured by peripheral computed tomography and the compressive behavior of lumbar vertebral bodies from macaques (Macaca fascicularis). Spine. 2008;33(4):366-372.PubMedCrossRefGoogle Scholar
  27. 27.
    Ahlborg H, Johnell O, Turner C, et al. Bone loss and bone size after menopause. N Engl J Med. 2003;349(4):327-334.PubMedCrossRefGoogle Scholar
  28. 28.
    Burghardt A, Kazakia G, Ramachandran S, et al. Age and gender related differences in the geometric properties and biomechanical significance of intra-cortical porosity in the distal radius and tibia. J Bone Miner Res. 2009;25(5):983-993 (Accepted article online: December 14, 2009).Google Scholar
  29. 29.
    Kazakia G, Hyun B, Burghardt J, et al. In vivo determination of bone structure in postmenopausal women: a comparison of HR-pQCT and High-Field MR Imaging. J Bone Miner Res. 2008;23:463-474.PubMedCrossRefGoogle Scholar
  30. 30.
    Parfitt A, Drezner M, Glorieux F, et al. Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR histomorphometry nomenclature committee. J Bone Miner Res. 1987;2(6):595-610.PubMedCrossRefGoogle Scholar
  31. 31.
    Fox J, Miller M, Newman M, et al. Effects of daily treatment with parathyroid hormone 1–84 for 16 months on density, architecture and biomechanical properties of cortical bone in adult ovariectomized rhesus monkeys. Bone. 2007;41(3):321-330.PubMedCrossRefGoogle Scholar
  32. 32.
    Turner C. Biomechanics of bone: determinants of skeletal fragility and bone quality. Osteoporos Int. 2002;13:97-104.PubMedCrossRefGoogle Scholar
  33. 33.
    Turner C, Burr D. Basic biomechanical measurements of bone: a tutorial. Bone. 1993;14:595-608.PubMedCrossRefGoogle Scholar
  34. 34.
    Burr D. Estimated intracortical bone turnover in the femur of growing macaques: implications for their use as models in skeletal pathology. Anat Rec. 1992;232(2):180-189.PubMedCrossRefGoogle Scholar
  35. 35.
    Prestwood K, Gunness M, Muchmore D, et al. A comparison of the effects of raloxifene and estrogen on bone in postmenopausal women. J Clin Endocrinol Metab. 2000;85(6): 2197-2202.PubMedCrossRefGoogle Scholar
  36. 36.
    Lees C, Shen V, Brommage R. Effects of lasofoxifene on bone in surgically postmenopausal cynomolgus monkeys. Menopause. 2007;14(1):97-105.PubMedCrossRefGoogle Scholar
  37. 37.
    Cline J, Botts S, Lees C, et al. Effects of lasofoxifene on the uterus, vagina, and breast in ovariectomized cynomolgus monkeys (Macaca fascicularis). Am J Obstet Gynecol 2008;199:158.el-8.Google Scholar
  38. 38.
    Heringa M. Review on raloxifene: profile of a selective estrogen receptor modulator. Int J Clin Pharmacol Ther. 2003;41(8):331-345.PubMedGoogle Scholar
  39. 39.
    Doyle N, Smith S, Veverka K. Male and female cynomolgus monkey models of osteoporosis: comparative in vivo data. J Bone Miner Res. 2008;23:S353.Google Scholar
  40. 40.
    Benhamou C. Effects of osteoporosis medications on bone quality. Joint Bone Spine. 2007;74(1):39-47.PubMedCrossRefGoogle Scholar
  41. 41.
    Fox J, Miller M, Recker R, et al. Effects of treatment of ovariectomized adult rhesus monkeys with parathyroid hormone 1–84 for 16 months on trabecular and cortical bone structure and biomechanical properties of the proximal femur. Calcif Tissue Int. 2007;81(1):53-63.PubMedCrossRefGoogle Scholar
  42. 42.
    Fox J, Newman M, Turner C, et al. Effects of treatment with parathyroid hormone 1–84 on quantity and biomechanical properties of thoracic vertebral trabecular bone in ovariectomized rhesus monkeys. Calcif Tissue Int. 2008;82(3):212-220.PubMedCrossRefGoogle Scholar
  43. 43.
    Miller M, Bare S, Recker R, et al. Intratrabecular tunneling increases trabecular number throughout the skeleton of ovariectomized rhesus monkeys treated with parathyroid hormone 1–84. Bone. 2008;42(6):1175-1183.PubMedCrossRefGoogle Scholar
  44. 44.
    Recker R, Bare S, Smith S, et al. Cancellous and cortical bone architecture and turnover at the iliac crest of postmenopausal osteoporotic women treated with parathyroid hormone 1–84. Bone. 2009;44(1):113-119.PubMedCrossRefGoogle Scholar
  45. 45.
    Gadeleta S, Boskey A, Paschalis E, et al. A physical, chemical, and mechanical study of lumbar vertebrae from normal, ovariectomized, and nandrlone decanoate-treated cynomolgus monkeys (Macaca fascicularis). Bone. 2000;27(4):541-550.PubMedCrossRefGoogle Scholar
  46. 46.
    Huang R, Miller L, Carlson C, et al. Characterization of bone mineral composition in the proximal tibia of cynomolgus monkeys: effect of ovariectomy and nandrlone decanoate treatment. Bone. 2002;30(3):492-497.PubMedCrossRefGoogle Scholar
  47. 47.
    Gourion-Arsiquaud S, Burket J, Havill L, et al. Spatial variation in osteonal bone properties relative to tissue and animal age. J Bone Miner Res. 2009;24(7):1271-1281.PubMedCrossRefGoogle Scholar
  48. 48.
    Saito M. Biochemical markers of bone turnover. New aspect. Bone collagen metabolism: new biological markers for eastimation of bone quality. Clin Calcium. 2009;19(8):1110-1117.PubMedGoogle Scholar
  49. 49.
    Saito M, Fujii K, Mori Y, et al. Role of collagen enzymatic and glycation induced cross-links as a determinant of bone quality in spontaneously diabetic WBN/Kob rats. Osteoporos Int. 2006;17(10):1514-1523.PubMedCrossRefGoogle Scholar
  50. 50.
    Tami A, Nasser P, Verborgt O, et al. The role of interstitial fluid flow in the remodeling response to fatigue loading. J Bone Miner Res. 2002;17:2030-2037.PubMedCrossRefGoogle Scholar
  51. 51.
    Epstein S. Is cortical bone hip? What determines cortical bone properties? Bone. 2007;41(1 Suppl 1):S3-S8.PubMedCrossRefGoogle Scholar
  52. 52.
    Brown J, Prince R, Deal C, et al. Comparison of the effect of denosumab and alendronate on BMD and biochemical markers of bone turnover in postmenopausal women with low bone mass: a randomized, blinded, phase 3 trial. J Bone Miner Res. 2010;25(5):983-993.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Susan Y. Smith
    • 1
  • Aurore Varela
  • Jacquelin Jolette
  1. 1.Department of Bone Research and General ToxicologyCharles River Preclinical ServicesMontréalCanada

Personalised recommendations