Animal Models of Premature Aging



Aging affects multiple organs and systems, which become unable to respond to stressors and environmental changes and therefore deteriorate in terms of function and structure.


Nuclear Envelope Accelerate Aging Ataxia Telangiectasia Werner Syndrome Bone Phenotype 
These keywords were added by machine and not by the authors.



The experimental results reported in this chapter were obtained thanks to the support of the Australian National Health and Medical Research Council (NHMRC) and the Nepean Medical Research Foundation.


  1.  1.
    Cevenini E, Invidia L, Lescai F, et al. Human models of aging and longevity. Expert Opin Biol Ther. 2008;8:1393-1405.PubMedCrossRefGoogle Scholar
  2.  2.
    Duque G, Troen BR. Understanding the mechanisms of senile osteoporosis: new facts for a major geriatric syndrome. J Am Geriatr Soc. 2008;56:935-941.PubMedCrossRefGoogle Scholar
  3.  3.
    Manolagas SC, Parfitt AM. What old means to bone. Trends Endocrinol Metab. 2010;21:369-374.PubMedCrossRefGoogle Scholar
  4.  4.
    Lelovas PP, Xanthos TT, Thoma SE, et al. The laboratory rat as an animal model for osteoporosis research. Comp Med. 2008;58:424-430.PubMedGoogle Scholar
  5.  5.
    Perel P, Roberts I, Sena E, et al. Comparison of treatment effects between animal experiments and clinical trials: systematic review. BMJ. 2007;334:197.PubMedCrossRefGoogle Scholar
  6.  6.
    Lyritis GP, Georgoulas T, Zafeiris CP. Bone anabolic versus bone anticatabolic treatment of postmenopausal osteoporosis. Ann NY Acad Sci. 2010;1205:277-283.PubMedCrossRefGoogle Scholar
  7.  7.
    Burtner CR, Kennedy BK. Progeria syndromes and ageing: what is the connection? Nat Rev Mol Cell Biol. 2010;11:567-578.PubMedCrossRefGoogle Scholar
  8.  8.
    Osorio FG, Obaya AJ, López-Otín C, et al. Accelerated ageing: from mechanism to therapy through animal models. Transgenic Res. 2009;18:7-15.PubMedCrossRefGoogle Scholar
  9.  9.
    Cox LS, Faragher RG. From old organisms to new molecules: integrative biology and therapeutic targets in accelerated human ageing. Cell Mol Life Sci. 2007;64:2620-2641.PubMedCrossRefGoogle Scholar
  10. 10.
    Yu CE, Oshima J, Fu YH, et al. Positional cloning of the Werner’s syndrome gene. Science. 1996;272:258-262.PubMedCrossRefGoogle Scholar
  11. 11.
    Lombard DB, Beard C, Johnson B, et al. Mutations in the WRN gene in mice accelerate mortality in a p53-null background. Mol Cell Biol. 2000;20:3286-3291.PubMedCrossRefGoogle Scholar
  12. 12.
    Chang S, Multani AS, Cabrera NG, et al. Essential role of limiting telomeres in the pathogenesis of Werner syndrome. Nat Genet. 2004;36:877-882.PubMedCrossRefGoogle Scholar
  13. 13.
    Multani AS, Chang S. WRN at telomeres: implications for aging and cancer. J Cell Sci. 2007;120:713-721.PubMedCrossRefGoogle Scholar
  14. 14.
    Lavin MF, Shiloh Y. The genetic defect in ataxia-telangiectasia. Annu Rev Immunol. 1997;15:177-202.PubMedCrossRefGoogle Scholar
  15. 15.
    Rotman G, Shiloh Y. ATM: from gene to function. Hum Mol Genet. 1998;7:1555-1563.PubMedCrossRefGoogle Scholar
  16. 16.
    Barlow C, Hirotsune S, Paylor R, et al. Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell. 1996;86:159-171.PubMedCrossRefGoogle Scholar
  17. 17.
    Hennekam RC. Hutchinson-Gilford progeria syndrome: review of the phenotype. Am J Med Genet A. 2006;140:2603-2624.PubMedGoogle Scholar
  18. 18.
    Merideth MA, Gordon LB, Clauss S, et al. Phenotype and course of Hutchinson-Gilford progeria syndrome. N Engl J Med. 2008;358:592-604.PubMedCrossRefGoogle Scholar
  19. 19.
    Pereira S, Bourgeois P, Navarro C, et al. HGPS and related premature aging disorders: from genomic identification to the first therapeutic approaches. Mech Ageing Dev. 2008; 129:449-459.PubMedCrossRefGoogle Scholar
  20. 20.
    de Paula Rodrigues GH, das Eiras Tâmega I, et al. Severe bone changes in a case of Hutchinson-Gilford syndrome. Ann Genet. 2002;45:151-155.PubMedGoogle Scholar
  21. 21.
    De Sandre-Giovannoli A, Bernard R, Cau P, et al. Lamin A truncation in Hutchinson-Gilford progeria. Science. 2003; 300:2055.PubMedCrossRefGoogle Scholar
  22. 22.
    Eriksson M, Brown WT, Gordon LB, et al. Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature. 2003;423:293-298.PubMedCrossRefGoogle Scholar
  23. 23.
    Pendas AM, Zhou Z, Cadinanos J, et al. Defective prelamin A processing and muscular and adipocyte alterations in Zmpste24 metalloproteinase-deficient mice. Nat Genet. 2002;31:94-99.PubMedGoogle Scholar
  24. 24.
    Cadinanos J, Varela I, Lopez-Otin C, et al. From immature lamin to premature aging: molecular pathways and therapeutic opportunities. Cell Cycle. 2005;4:1732-1735.PubMedCrossRefGoogle Scholar
  25. 25.
    de Carlos F, Varela I, Germana A, et al. Microcephalia with mandibular and dental dysplasia in adult Zmpste24 deficient mice. J Anat. 2008;213:509-519.PubMedCrossRefGoogle Scholar
  26. 26.
    Varela I, Cadinanos J, Pendas AM, et al. Accelerated ageing in mice deficient in Zmpste24 protease is linked to p53 signalling activation. Nature. 2005;437:564-568.PubMedCrossRefGoogle Scholar
  27. 27.
    Fong LG, Ng JK, Meta M, et al. Heterozygosity for Lmna deficiency eliminates the progeria-like phenotypes in Zmpste24-deficient mice. Proc Natl Acad Sci USA. 2004; 101:18111-18116.PubMedCrossRefGoogle Scholar
  28. 28.
    Fong LG, Frost D, Meta M, et al. A protein farnesyltransferase inhibitor ameliorates disease in a mouse model of progeria. Science. 2006;311:1621-1623.PubMedCrossRefGoogle Scholar
  29. 29.
    Sullivan T, Escalante-Alcalde D, Bhatt H, et al. Loss of A-type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J Cell Biol. 1999; 147:913-920.PubMedCrossRefGoogle Scholar
  30. 30.
    Opresko PL. Telomere ResQue and preservation–roles for the Werner syndrome protein and other RecQ helicases. Mech Ageing Dev. 2008;129:79-90.PubMedCrossRefGoogle Scholar
  31. 31.
    Pignolo RJ, Suda RK, McMillan EA, et al. Defects in telomere maintenance molecules impair osteoblast differentiation and promote osteoporosis. Aging Cell. 2008;7:23-31.PubMedCrossRefGoogle Scholar
  32. 32.
    Du X, Shen J, Kugan N, et al. Telomere shortening exposes functions for the mouse Werner and Bloom syndrome genes. Mol Cell Biol. 2004;24:8437-8446.PubMedCrossRefGoogle Scholar
  33. 33.
    Lebel M, Spillare EA, Harris CC, et al. The Werner syndrome gene product co-purifies with the DNA replication complex and interacts with PCNA and topoisomerase I. J Biol Chem. 1999;274:37795-37799.PubMedCrossRefGoogle Scholar
  34. 34.
    Akter R, Rivas D, Geneau G, et al. Effect of lamin A/C knockdown on osteoblast differentiation and function. J Bone Miner Res. 2009;24:283-293.PubMedCrossRefGoogle Scholar
  35. 35.
    Duque G, Vidal C, Rivas D. Protein isoprenylation regulates osteogenic differentiation of mesenchymal stem cells: effect of alendronate, and farnesyl and geranylgeranyl transferase inhibitors. Br J Pharmacol. 2011;162:1109-1118.Google Scholar
  36. 36.
    Bergo MO, Gavino B, Ross J, et al. Zmpste24 deficiency in mice causes spontaneous bone fractures, muscle weakness, and a prelamin A processing defect. Proc Natl Acad Sci USA. 2002;99:13049-13054.PubMedCrossRefGoogle Scholar
  37. 37.
    Rivas D, Li W, Akter R, et al. Accelerated features of age-related bone loss in zmpste24 metalloproteinase-deficient mice. J Gerontol A Biol Sci Med Sci. 2009;64:1015-1024.PubMedCrossRefGoogle Scholar
  38. 38.
    Ng A, Duque G. Osteoporosis as a lipotoxic disease. IBMS BoneKEy. 2010;7:108-123.CrossRefGoogle Scholar
  39. 39.
    Varela I, Pereira S, Ugalde AP, et al. Combined treatment with statins and aminobisphosphonates extends longevity in a mouse model of human premature aging. Nat Med. 2008;14:767-772.PubMedCrossRefGoogle Scholar
  40. 40.
    Fatkin D, MacRae C, Sasaki T, et al. Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease. N Engl J Med. 1999;341:1715-1724.PubMedCrossRefGoogle Scholar
  41. 41.
    Chandar S, Yeo LS, Leimena C, et al. Effects of mechanical stress and carvedilol in lamin A/C-deficient dilated cardiomyopathy. Circ Res. 2010;106:573-582.PubMedCrossRefGoogle Scholar
  42. 42.
    Li W, Yeo LS, Vidal C, McCorquodale T, Herrmann M, et al. 2011 Decreased Bone Formation and Osteopenia in Lamin A/C-Deficient Mice. PLoS ONE 6(4): e19313. doi:10.1371/journal.pone.0019313.Google Scholar
  43. 43.
    Duque G, Li W, Yeo L, et al. Exercise has a deleterious effect on bone quality in lamin A/C happloinsuficient mice.Bone, 2011 (in press).CrossRefGoogle Scholar
  44. 44.
    Hishiya A, Ito M, Aburatani H, et al. Ataxia telangiectasia mutated (Atm) knockout mice as a model of osteopenia due to impaired bone formation. Bone. 2005;37:497-503.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Discipline of Geriatric Medicine, Ageing Bone Research Centre, Sydney Medical School – Nepean CampusThe University of SydneyPenrithAustralia

Personalised recommendations